SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA.
Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
Nat Commun. 2017 Sep 26;8(1):701. doi: 10.1038/s41467-017-00585-6.
Electrochemical production of hydrogen peroxide (HO) from water oxidation could provide a very attractive route to locally produce a chemically valuable product from an abundant resource. Herein using density functional theory calculations, we predict trends in activity for water oxidation towards HO evolution on four different metal oxides, i.e., WO, SnO, TiO and BiVO. The density functional theory predicted trend for HO evolution is further confirmed by our experimental measurements. Moreover, we identify that BiVO has the best HO generation amount of those oxides and can achieve a Faraday efficiency of about 98% for HO production.Producing hydrogen peroxide via electrochemical oxidation of water is an attractive route to this valuable product. Here the authors theoretically and experimentally investigate hydrogen peroxide production activity trends for a range of metal oxides and identify the optimal bias ranges for high Faraday efficiencies.
通过水氧化电化学生产过氧化氢(HO)可以提供一条非常有吸引力的途径,从丰富的资源中本地生产具有化学价值的产品。在此,我们使用密度泛函理论计算,预测了 WO、SnO、TiO 和 BiVO 四种不同金属氧化物上水氧化向 HO 演化的活性趋势。实验测量进一步证实了密度泛函理论预测的 HO 演化趋势。此外,我们发现 BiVO 具有这些氧化物中最好的 HO 生成量,并能实现约 98%的 HO 生产的法拉第效率。通过电化学氧化水生产过氧化氢是一种有吸引力的方法。在这里,作者从理论和实验上研究了一系列金属氧化物的过氧化氢生产活性趋势,并确定了实现高法拉第效率的最佳偏置范围。