Rathod Vivek T, Mahapatra Debiprosad Roy
Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India.
Bioengineering (Basel). 2017 Mar 14;4(1):24. doi: 10.3390/bioengineering4010024.
This paper presents the design optimization of diaphragms for a micro-shock tube-based drug delivery device. The function of the diaphragm is to impart the required velocity and direction to the loosely held drug particles on the diaphragm through van der Waals interaction. The finite element model-based studies involved diaphragms made up of copper, brass and aluminium. The study of the influence of material and geometric parameters serves as a vital tool in optimizing the magnitude and direction of velocity distribution on the diaphragm surface. Experiments carried out using a micro-shock tube validate the final deformed shape of the diaphragms determined from the finite element simulation. The diaphragm yields a maximum velocity of 335 m/s for which the maximum deviation of the velocity vector is 0.62°. Drug particles that travel to the destination target tissue are simulated using the estimated velocity distribution and angular deviation. Further, a theoretical model of penetration helps in the prediction of the drug particle penetration in the skin tissue like a target, which is found to be 0.126 mm. The design and calibration procedure of a micro-shock tube device to alter drug particle penetration considering the skin thickness and property are presented.
本文介绍了一种基于微冲击管的药物输送装置中隔膜的设计优化。隔膜的作用是通过范德华相互作用,为隔膜上松散附着的药物颗粒赋予所需的速度和方向。基于有限元模型的研究涉及由铜、黄铜和铝制成的隔膜。材料和几何参数影响的研究是优化隔膜表面速度分布大小和方向的重要工具。使用微冲击管进行的实验验证了通过有限元模拟确定的隔膜最终变形形状。隔膜产生的最大速度为335米/秒,此时速度矢量的最大偏差为0.62°。利用估计的速度分布和角度偏差模拟了到达目标组织的药物颗粒。此外,穿透理论模型有助于预测药物颗粒在如目标皮肤组织中的穿透情况,发现穿透深度为0.126毫米。本文还介绍了一种考虑皮肤厚度和特性来改变药物颗粒穿透深度的微冲击管装置的设计和校准程序。