Suppr超能文献

体内人体皮肤的动态光学相干弹性成像生物力学特性。

Biomechanical properties of in vivo human skin from dynamic optical coherence elastography.

机构信息

Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

IEEE Trans Biomed Eng. 2010 Apr;57(4):953-9. doi: 10.1109/TBME.2009.2033464. Epub 2009 Oct 9.

Abstract

Dynamic optical coherence elastography is used to determine in vivo skin biomechanical properties based on mechanical surface wave propagation. Quantitative Young's moduli are measured on human skin from different sites, orientations, and frequencies. Skin thicknesses, including measurements from different layers, are also measured simultaneously. Experimental results show significant differences among measurements from different skin sites, between directions parallel and orthogonal to Langer's lines, and under different skin hydration states. Results also suggest surface waves with different driving frequencies represent skin biomechanical properties from different layers in depth. With features such as micrometer-scale resolution, noninvasive imaging, and real-time processing from the optical coherence tomography technology, this optical measurement technique has great potential for measuring skin biomechanical properties in dermatology.

摘要

动态光学相干弹性成像用于基于机械表面波传播来确定体内皮肤生物力学特性。在人体皮肤的不同部位、方位和频率下测量定量杨氏模量。同时还测量了皮肤厚度,包括来自不同层的测量值。实验结果表明,不同皮肤部位的测量值、与朗格线平行和垂直的方向之间以及不同皮肤水合状态下的测量值存在显著差异。结果还表明,具有不同驱动频率的表面波代表了深度不同层的皮肤生物力学特性。由于光学相干断层扫描技术具有亚毫米级分辨率、非侵入性成像和实时处理等特点,这种光学测量技术在皮肤科测量皮肤生物力学特性方面具有很大的潜力。

相似文献

1
Biomechanical properties of in vivo human skin from dynamic optical coherence elastography.
IEEE Trans Biomed Eng. 2010 Apr;57(4):953-9. doi: 10.1109/TBME.2009.2033464. Epub 2009 Oct 9.
2
Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study.
Phys Med Biol. 2015 May 7;60(9):3531-47. doi: 10.1088/0031-9155/60/9/3531. Epub 2015 Apr 10.
3
Quantification of iris elasticity using acoustic radiation force optical coherence elastography.
Appl Opt. 2020 Dec 1;59(34):10739-10745. doi: 10.1364/AO.406190.
4
Optical coherence elastography to evaluate depth-resolved elasticity of tissue.
Opt Express. 2022 Mar 14;30(6):8709-8722. doi: 10.1364/OE.451704.
5
In vivo stiffness measurement of epidermis, dermis, and hypodermis using broadband Rayleigh-wave optical coherence elastography.
Acta Biomater. 2022 Jul 1;146:295-305. doi: 10.1016/j.actbio.2022.04.030. Epub 2022 Apr 22.
7
In Vivo Human Corneal Shear-wave Optical Coherence Elastography.
Optom Vis Sci. 2021 Jan 1;98(1):58-63. doi: 10.1097/OPX.0000000000001633.
8
Optical coherence elastography for tissue characterization: a review.
J Biophotonics. 2015 Apr;8(4):279-302. doi: 10.1002/jbio.201400108. Epub 2014 Nov 20.
10
Spatial resolution in dynamic optical coherence elastography.
J Biomed Opt. 2019 Sep;24(9):1-16. doi: 10.1117/1.JBO.24.9.096006.

引用本文的文献

1
Development of breast-mimicking phantoms for use in optical coherence elastography.
J Biomed Opt. 2025 Dec;30(12):124504. doi: 10.1117/1.JBO.30.12.124504. Epub 2025 Sep 2.
8
Generative Hyperelasticity with Physics-Informed Probabilistic Diffusion Fields.
Eng Comput. 2025 Feb;41(1):51-69. doi: 10.1007/s00366-024-01984-2. Epub 2024 May 18.
9
Collagen Hybridizing Peptides Promote Collagen Fibril Growth .
ACS Appl Bio Mater. 2025 Mar 17;8(3):2003-2014. doi: 10.1021/acsabm.4c01509. Epub 2025 Feb 26.
10
VP-net: an end-to-end deep learning network for elastic wave velocity prediction in human skin using optical coherence elastography.
Front Bioeng Biotechnol. 2024 Oct 14;12:1465823. doi: 10.3389/fbioe.2024.1465823. eCollection 2024.

本文引用的文献

1
Interferometric synthetic aperture microscopy.
Nat Phys. 2007 Feb 1;3(2):129-134. doi: 10.1038/nphys514.
2
Acoustomotive optical coherence elastography for measuring material mechanical properties.
Opt Lett. 2009 Oct 1;34(19):2894-6. doi: 10.1364/OL.34.002894.
3
OCT-based elastography for large and small deformations.
Opt Express. 2006 Nov 27;14(24):11585-97. doi: 10.1364/oe.14.011585.
4
Imaging thermally damaged tissue by Polarization Sensitive Optical Coherence Tomography.
Opt Express. 1998 Sep 14;3(6):212-8. doi: 10.1364/oe.3.000212.
5
OCT elastography: imaging microscopic deformation and strain of tissue.
Opt Express. 1998 Sep 14;3(6):199-211. doi: 10.1364/oe.3.000199.
7
Optical micro-scale mapping of dynamic biomechanical tissue properties.
Opt Express. 2008 Jul 21;16(15):11052-65. doi: 10.1364/oe.16.011052.
10
Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery.
IEEE Trans Biomed Eng. 2007 May;54(5):903-13. doi: 10.1109/TBME.2006.889173.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验