Adli Hasyiya Karimah, Harada Takashi, Nakanishi Shuji, Ikeda Shigeru
Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
Phys Chem Chem Phys. 2017 Oct 11;19(39):26898-26905. doi: 10.1039/c7cp04132b.
The effects of surface treatment with TiCl on the structural and electrochemical properties of a porous titanium oxide (pTiO) layer deposited on a fluorine-doped tin oxide (FTO)/glass substrate covered with a dense TiO layer (pTiO/dTiO/FTO/glass) were systematically investigated in order to obtain an optimum pTiO layer for use in CHNHPbI perovskite solar cells. As confirmed by thermal desorption spectroscopy (TDS) analyses, the amount of surface hydroxyl groups in pTiO varied when the pTiO/dTiO/FTO/glass sample was treated with solutions with different concentrations of TiCl (i.e., 20, 50, 80, and 100 mM). Photoelectrochemical (PEC) analyses of the pTiO/dTiO/FTO/glass samples after TiCl treatment showed significant increments of photocurrent densities compared to the pTiO/dTiO/FTO/glass sample without TiCl treatment regardless of the concentration of TiCl used in the solution. Electrochemical impedance spectroscopy (EIS) analyses of the TiCl-treated pTiO/dTiO/FTO/glass samples also indicated a lower recombination probability with an increase in TiCl concentration. The results suggest that TiCl treatment resulted in passivation of defect sites on the surface of the TiO nanoparticles as well as improvement of the interconnectivity between the TiO nanoparticles in pTiO. In contrast, the power conversion efficiencies (PCEs) and short circuit current densities of CHNHPbI perovskite solar cells based on these pTiO/dTiO/FTO/glass samples exhibited volcano-like patterns depending on the TiCl concentration used for the pTiO treatment: the highest PCE was obtained by using pTiO/dTiO/FTO/glass treated with 50 mM of TiCl solution. Structural analysis of the CHNHPbI perovskite part performed by X-ray diffraction (XRD) indicated that the formation of CHNHPbI perovskite was inhibited by the presence of surface hydroxyl groups in the pTiO film without TiCl treatment. TiCl treatment using TiCl solutions with concentrations up to 50 mM enhanced the formation of the CHNHPbI perovskite layer, whereas TiCl treatment using TiCl solutions with concentrations higher than 50 mM was detrimental due to the formation of nanoparticulate TiO aggregates that induce poor porosity and act as recombination sites.
为了获得用于CHNHPbI钙钛矿太阳能电池的最佳多孔二氧化钛(pTiO)层,系统地研究了用TiCl进行表面处理对沉积在覆盖有致密TiO层的氟掺杂氧化锡(FTO)/玻璃衬底上的多孔二氧化钛(pTiO)层的结构和电化学性能的影响。通过热脱附光谱(TDS)分析证实,当用不同浓度(即20、50、80和100 mM)的TiCl溶液处理pTiO/dTiO/FTO/玻璃样品时,pTiO中表面羟基的数量会发生变化。与未经TiCl处理的pTiO/dTiO/FTO/玻璃样品相比,TiCl处理后的pTiO/dTiO/FTO/玻璃样品的光电化学(PEC)分析表明,无论溶液中使用的TiCl浓度如何,光电流密度都有显著增加。对经TiCl处理的pTiO/dTiO/FTO/玻璃样品的电化学阻抗谱(EIS)分析也表明,随着TiCl浓度的增加,复合概率降低。结果表明,TiCl处理导致TiO纳米颗粒表面的缺陷位点钝化,以及pTiO中TiO纳米颗粒之间的互连性得到改善。相比之下,基于这些pTiO/dTiO/FTO/玻璃样品的CHNHPbI钙钛矿太阳能电池的功率转换效率(PCE)和短路电流密度根据用于pTiO处理的TiCl浓度呈现出火山状图案:使用50 mM TiCl溶液处理的pTiO/dTiO/FTO/玻璃获得了最高的PCE。通过X射线衍射(XRD)对CHNHPbI钙钛矿部分进行的结构分析表明,未经TiCl处理的pTiO薄膜中表面羟基的存在抑制了CHNHPbI钙钛矿的形成。使用浓度高达5 mM的TiCl溶液进行TiCl处理增强了CHNHPbI钙钛矿层的形成,而使用浓度高于50 mM的TiCl溶液进行TiCl处理则是有害的,因为会形成纳米颗粒状的TiO聚集体,导致孔隙率低并充当复合位点。