Laboratory of Photonics and Interfaces, Swiss Federal Institute of Technology (EPFL) , Station 6, CH 1015, Lausanne, Switzerland.
Nano Lett. 2014 May 14;14(5):2591-6. doi: 10.1021/nl500399m. Epub 2014 Apr 2.
We demonstrate low-temperature (70 °C) solution processing of TiO2/CH3NH3PbI3 based solar cells, resulting in impressive power conversion efficiency (PCE) of 13.7%. Along with the high efficiency, a strikingly high open circuit potential (VOC) of 1110 mV was realized using this low-temperature chemical bath deposition approach. To the best of our knowledge, this is so far the highest VOC value for solution-processed TiO2/CH3NH3PbI3 solar cells. We deposited a nanocrystalline TiO2 (rutile) hole-blocking layer on a fluorine-doped tin oxide (FTO) conducting glass substrate via hydrolysis of TiCl4 at 70 °C, forming the electron selective contact with the photoactive CH3NH3PbI3 film. We find that the nanocrystalline rutile TiO2 achieves a much better performance than a planar TiO2 (anatase) film prepared by high-temperature spin coating of TiCl4, which produces a much lower PCE of 3.7%. We attribute this to the formation of an intimate junction of large interfacial area between the nanocrystalline rutile TiO2 and the CH3NH3PbI3 layer, which is much more effective in extracting photogenerated electrons than the planar anatase film. Since the complete fabrication of the solar cell is carried out below 100 °C, this method can be easily extended to plastic substrates.
我们展示了在低温(70°C)下处理 TiO2/CH3NH3PbI3 基太阳能电池的方法,得到了令人印象深刻的 13.7%功率转换效率(PCE)。除了高效率外,使用这种低温化学浴沉积方法还实现了高达 1110 mV 的开路电压(VOC)。据我们所知,这是迄今为止使用溶液处理的 TiO2/CH3NH3PbI3 太阳能电池获得的最高 VOC 值。我们通过在 70°C 下水解 TiCl4 在掺氟氧化锡(FTO)导电玻璃基底上沉积了一层纳米晶锐钛矿 TiO2 空穴阻挡层,与光活性的 CH3NH3PbI3 薄膜形成了电子选择性接触。我们发现,纳米晶锐钛矿 TiO2 的性能比通过高温旋涂 TiCl4 制备的平面 TiO2(锐钛矿)薄膜要好得多,后者的 PCE 只有 3.7%。我们将这归因于纳米晶锐钛矿 TiO2 与 CH3NH3PbI3 层之间形成了大界面面积的紧密结,与平面锐钛矿薄膜相比,这种紧密结更有效地提取了光生电子。由于太阳能电池的完整制造过程都在 100°C 以下进行,因此这种方法很容易扩展到塑料基底上。