Suppr超能文献

混合超薄膜氮化硅/碳中优异的耐磨性和低摩擦:界面化学和碳微观结构的协同作用。

Superior wear resistance and low friction in hybrid ultrathin silicon nitride/carbon films: synergy of the interfacial chemistry and carbon microstructure.

机构信息

Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583.

出版信息

Nanoscale. 2017 Oct 12;9(39):14937-14951. doi: 10.1039/c7nr03737f.

Abstract

Amorphous carbon-based films are commonly investigated as protective nanocoatings in macro- to nano-scale devices due to their exceptional tribological and mechanical properties. However, with further device miniaturization where even thinner coatings are required, the wear durability of the nanocoating rapidly degrades at the expense of lower thickness. Here we discover that for sub-10 nm coating thicknesses, a hybrid bi-layer film structure, comprising a high sp-bonded amorphous carbon top layer and a silicon nitride (SiN) bottom layer, consistently outperforms its single-layer amorphous carbon counterpart in terms of wear durability on a commercial tape drive head, while exhibiting low, stable friction and excellent wear resistance on a flat ceramic substrate. The superior performance of the hybrid film is attributed to the constructive synergy of the sp-rich carbon microstructure and an enhanced interfacial chemistry arising from additional interfacial bonding. Moreover, a high energy C ion treatment step, introduced either directly to the substrate or to the SiN layer before carbon deposition, also aids in increasing atomic mixing that contributes to further improvement in the wear resistance. This study highlights the importance of both the carbon microstructure and interfacial chemistry in the design of wear-durable nanocoatings at few-nanometer thicknesses, particularly for aggressive wear conditions.

摘要

非晶态碳基薄膜由于其优异的摩擦学和机械性能,通常被研究作为宏观到纳米尺度器件的保护性纳米涂层。然而,随着器件进一步小型化,甚至需要更薄的涂层,纳米涂层的耐磨性会迅速降低,代价是涂层厚度降低。在这里,我们发现对于亚 10nm 的涂层厚度,由高 sp 键合非晶碳顶层和氮化硅(SiN)底层组成的混合双层薄膜结构,在商业磁带驱动头的耐磨性方面始终优于其单层非晶碳对应物,同时在平面陶瓷衬底上表现出低、稳定的摩擦系数和优异的耐磨性。混合膜的优异性能归因于 sp 富碳微结构的建设性协同作用以及由于额外的界面键合而增强的界面化学。此外,在碳沉积之前直接对衬底或 SiN 层进行高能 C 离子处理步骤,也有助于增加原子混合,从而进一步提高耐磨性。这项研究强调了在设计具有数纳米厚度的耐磨纳米涂层时,碳微观结构和界面化学的重要性,特别是在苛刻的磨损条件下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验