Suppr超能文献

通过原子混合和纳米级界面定制增强接触滑动和磨损保护。

Boosting contact sliding and wear protection via atomic intermixing and tailoring of nanoscale interfaces.

作者信息

Dwivedi Neeraj, Yeo Reuben J, Dhand Chetna, Risan Jared, Nay Richard, Tripathy Sudhiranjan, Rajauria Sukumar, Saifullah Mohammad S M, Sankaranarayanan Subramanian K R S, Yang Hyunsoo, Danner Aaron, Bhatia Charanjit S

机构信息

Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Republic of Singapore.

Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

出版信息

Sci Adv. 2019 Jan 18;5(1):eaau7886. doi: 10.1126/sciadv.aau7886. eCollection 2019 Jan.

Abstract

Friction and wear cause energy wastage and system failure. Usually, thicker overcoats serve to combat such tribological concerns, but in many contact sliding systems, their large thickness hinders active components of the systems, degrades functionality, and constitutes a major barrier for technological developments. While sub-10-nm overcoats are of key interest, traditional overcoats suffer from rapid wear and degradation at this thickness regime. Using an enhanced atomic intermixing approach, we develop a 7- to 8-nm-thick carbon/silicon nitride (C/SiN ) multilayer overcoat demonstrating extremely high wear resistance and low friction at all tribological length scales, yielding ~2 to 10 times better macroscale wear durability than previously reported thicker (20 to 100 nm) overcoats on tape drive heads. We report the discovery of many fundamental parameters that govern contact sliding and reveal how tuning atomic intermixing at interfaces and varying carbon and SiN thicknesses strongly affect friction and wear, which are crucial for advancing numerous technologies.

摘要

摩擦与磨损会导致能量损耗和系统故障。通常,较厚的涂层有助于应对此类摩擦学问题,但在许多接触滑动系统中,其较大的厚度会阻碍系统的活性部件,降低功能,并成为技术发展的主要障碍。虽然厚度小于10纳米的涂层备受关注,但传统涂层在这种厚度范围内会迅速磨损和退化。通过使用增强的原子混合方法,我们开发出一种厚度约为7至8纳米的碳/氮化硅(C/SiN )多层涂层,该涂层在所有摩擦学长度尺度上均表现出极高的耐磨性和低摩擦性,在宏观尺度上的磨损耐久性比先前报道的磁带驱动头较厚(约20至100纳米)的涂层高出约2至10倍。我们报告了许多控制接触滑动的基本参数的发现,并揭示了如何调整界面处的原子混合以及改变碳和SiN 的厚度会强烈影响摩擦和磨损,这对于推动众多技术发展至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验