Suppr超能文献

基于加权对称滤波器的多模态图像自动 2-D/3-D 血管增强。

Automatic 2-D/3-D Vessel Enhancement in Multiple Modality Images Using a Weighted Symmetry Filter.

出版信息

IEEE Trans Med Imaging. 2018 Feb;37(2):438-450. doi: 10.1109/TMI.2017.2756073. Epub 2017 Sep 25.

Abstract

Automated detection of vascular structures is of great importance in understanding the mechanism, diagnosis, and treatment of many vascular pathologies. However, automatic vascular detection continues to be an open issue because of difficulties posed by multiple factors, such as poor contrast, inhomogeneous backgrounds, anatomical variations, and the presence of noise during image acquisition. In this paper, we propose a novel 2-D/3-D symmetry filter to tackle these challenging issues for enhancing vessels from different imaging modalities. The proposed filter not only considers local phase features by using a quadrature filter to distinguish between lines and edges, but also uses the weighted geometric mean of the blurred and shifted responses of the quadrature filter, which allows more tolerance of vessels with irregular appearance. As a result, this filter shows a strong response to the vascular features under typical imaging conditions. Results based on eight publicly available datasets (six 2-D data sets, one 3-D data set, and one 3-D synthetic data set) demonstrate its superior performance to other state-of-the-art methods.

摘要

血管结构的自动检测在理解许多血管病变的机制、诊断和治疗方面非常重要。然而,由于多种因素的影响,如对比度差、不均匀的背景、解剖变异以及图像采集过程中的噪声,自动血管检测仍然是一个悬而未决的问题。在本文中,我们提出了一种新颖的 2-D/3-D 对称滤波器,用于解决这些具有挑战性的问题,以增强来自不同成像模式的血管。所提出的滤波器不仅通过使用正交滤波器来区分线和边缘来考虑局部相位特征,而且还使用正交滤波器的模糊和移位响应的加权几何平均值,这允许对具有不规则外观的血管具有更大的容忍度。因此,该滤波器在典型的成像条件下对血管特征具有很强的响应。基于八个公开可用数据集(六个 2-D 数据集、一个 3-D 数据集和一个 3-D 合成数据集)的结果表明,该滤波器的性能优于其他最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验