Suppr超能文献

在 Grassmann 流形上的判别式结构字典学习及其在图像恢复中的应用。

Discriminative Structured Dictionary Learning on Grassmann Manifolds and Its Application on Image Restoration.

出版信息

IEEE Trans Cybern. 2018 Oct;48(10):2875-2886. doi: 10.1109/TCYB.2017.2751585. Epub 2017 Sep 25.

Abstract

Image restoration is a difficult and challenging problem in various imaging applications. However, despite of the benefits of a single overcomplete dictionary, there are still several challenges for capturing the geometric structure of image of interest. To more accurately represent the local structures of the underlying signals, we propose a new problem formulation for sparse representation with block-orthogonal constraint. There are three contributions. First, a framework for discriminative structured dictionary learning is proposed, which leads to a smooth manifold structure and quotient search spaces. Second, an alternating minimization scheme is proposed after taking both the cost function and the constraints into account. This is achieved by iteratively alternating between updating the block structure of the dictionary defined on Grassmann manifold and sparsifying the dictionary atoms automatically. Third, Riemannian conjugate gradient is considered to track local subspaces efficiently with a convergence guarantee. Extensive experiments on various datasets demonstrate that the proposed method outperforms the state-of-the-art methods on the removal of mixed Gaussian-impulse noise.

摘要

图像恢复是各种成像应用中的一个难题和挑战。然而,尽管单一过完备字典有许多好处,但仍存在一些挑战来捕捉感兴趣图像的几何结构。为了更准确地表示底层信号的局部结构,我们提出了一种新的稀疏表示问题公式,具有块正交约束。主要有三个贡献。首先,提出了一种用于判别结构字典学习的框架,它导致了平滑流形结构和商搜索空间。其次,在考虑成本函数和约束条件的基础上,提出了一种交替最小化方案。这是通过迭代更新定义在 Grassmann 流形上的字典的块结构和自动稀疏字典原子来实现的。第三,考虑了黎曼共轭梯度来有效地跟踪局部子空间,并保证收敛。在各种数据集上的广泛实验表明,所提出的方法在混合高斯脉冲噪声的去除方面优于最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验