Suppr超能文献

基于局部约束的卷积字典学习的脑肿瘤磁共振图像分类

Brain Tumor MR Image Classification Using Convolutional Dictionary Learning With Local Constraint.

作者信息

Gu Xiaoqing, Shen Zongxuan, Xue Jing, Fan Yiqing, Ni Tongguang

机构信息

School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China.

Department of Nephrology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.

出版信息

Front Neurosci. 2021 May 28;15:679847. doi: 10.3389/fnins.2021.679847. eCollection 2021.

Abstract

Brain tumor image classification is an important part of medical image processing. It assists doctors to make accurate diagnosis and treatment plans. Magnetic resonance (MR) imaging is one of the main imaging tools to study brain tissue. In this article, we propose a brain tumor MR image classification method using convolutional dictionary learning with local constraint (CDLLC). Our method integrates the multi-layer dictionary learning into a convolutional neural network (CNN) structure to explore the discriminative information. Encoding a vector on a dictionary can be considered as multiple projections into new spaces, and the obtained coding vector is sparse. Meanwhile, in order to preserve the geometric structure of data and utilize the supervised information, we construct the local constraint of atoms through a supervised -nearest neighbor graph, so that the discrimination of the obtained dictionary is strong. To solve the proposed problem, an efficient iterative optimization scheme is designed. In the experiment, two clinically relevant multi-class classification tasks on the Cheng and REMBRANDT datasets are designed. The evaluation results demonstrate that our method is effective for brain tumor MR image classification, and it could outperform other comparisons.

摘要

脑肿瘤图像分类是医学图像处理的重要组成部分。它有助于医生制定准确的诊断和治疗方案。磁共振(MR)成像 是研究脑组织的主要成像工具之一。在本文中,我们提出了一种使用带局部约束的卷积字典学习(CDLLC)的脑肿瘤MR图像分类方法。我们的方法将多层字典学习集成到卷积神经网络(CNN)结构中,以探索判别信息。在字典上对向量进行编码可以看作是向新空间的多个投影,并且所获得的编码向量是稀疏的。同时,为了保留数据的几何结构并利用监督信息,我们通过监督最近邻图构建原子的局部约束,从而使所获得字典的判别力很强。为了解决所提出的问题,设计了一种有效的迭代优化方案。在实验中,在Cheng和REMBRANDT数据集上设计了两个临床相关的多类分类任务。评估结果表明,我们的方法对于脑肿瘤MR图像分类是有效的,并且它可以优于其他比较方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b639/8193950/e34855a2d534/fnins-15-679847-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验