Ocampo-García Blanca E, Santos-Cuevas Clara L, Luna-Gutiérrez Myrna A, Ignacio-Alvarez Eleazar, Pedraza-López Martha, Manzano-Mayoral Cesar
aDepartamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac bDepartamento de Medicina Nuclear, Instituto Nacional de Cancerología, Ciudad de México cDepartamento de Medicina Nuclear, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México dDepartamento de Medicina Nuclear, Centro de Diagnóstico Integral del Noroeste, Hermosillo, Sonora, Mexico.
Nucl Med Commun. 2017 Nov;38(11):912-918. doi: 10.1097/MNM.0000000000000736.
About 90% of insulinomas are benign and 5-15% are malignant. Benign insulinomas express the glucagon-like peptide-1 receptor (GLP-1R, which recognizes exendin-4 and low levels of the somatostatin receptor (SSTR, which recognizes octreotide), whereas malignant insulinomas overexpress SSTR and low levels of GLP-1R. Recently, Lys(Tc-EDDA/HYNIC)-exendin(9-39)/Tc-EDDA/HYNIC-Tyr-octreotide was formulated to detect 100% of insulinomas. The aim of this study was to estimate the biokinetics and dosimetry of Tc-exendin(9-39)/octreotide in four healthy individuals.
Tc-exendin(9-39)/octreotide was obtained from a lyophilized formulation with radiochemical purities of more than 97%, determined by reversed-phase high-performance liquid chromatography. Whole-body images from four healthy individuals were acquired at 20 min, 2, 6, and 24 h after Tc-exendin(9-39)/octreotide administration. Regions of interest were drawn around the source organs on each time frame. Each region of interest was corrected by background, attenuation, scattered radiation, and physical decay. The image sequence was used to extrapolate the Tc-exendin(9-39)/octreotide time-activity curves of each organ to adjust the biokinetic model and calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation doses. Furthermore, in a patient suspicious of harboring an insulinoma, whole-body single-photon emission computed tomography/computed tomography images were obtained at 3 h.
For four healthy individuals, the blood activity showed a half-life value of 1.20 min for the fast component (T1/2 α=ln 2/34.71), 8.7 min for the first slow component (T1/2 β=ln 2/4.76), and 1.7 h for the second slow component (T1/2 γ=ln 2/0.401). The average equivalent doses calculated for a study using 555 MBq were 15.10, 4.13, 3.08, 2.61, and 1.90 mSv for the kidneys, upper large intestinal wall, lower large intestinal wall, small intestine, and liver, respectively, with an effective dose of 2.33±0.51 mSv. In addition, images from a patient showed an average tumor/heart (blood) ratio of 2.7 at 3 h.
All the absorbed doses were comparable to those known for most of the Tc studies. Tc-exendin(9-39)/octreotide obtained from kit formulations showed high tumor uptake in a patient with a malignant lesion, making it a promising imaging radiopharmaceutical to target GLP-1R and SSTR.
约90%的胰岛素瘤是良性的,5 - 15%是恶性的。良性胰岛素瘤表达胰高血糖素样肽-1受体(GLP-1R,可识别艾塞那肽-4)和低水平的生长抑素受体(SSTR,可识别奥曲肽),而恶性胰岛素瘤则过度表达SSTR且GLP-1R水平较低。最近,制备了赖氨酸(锝-乙二胺二乙酸/ HYNI C)-艾塞那肽(9 - 39)/锝-乙二胺二乙酸/ HYNI C-酪氨酰-奥曲肽,可检测出100%的胰岛素瘤。本研究的目的是评估锝-艾塞那肽(9 - 39)/奥曲肽在四名健康个体中的生物动力学和剂量学。
锝-艾塞那肽(9 - 39)/奥曲肽由冻干制剂获得,通过反相高效液相色谱法测定其放射化学纯度超过97%。在给予锝-艾塞那肽(9 - 39)/奥曲肽后20分钟、2小时、6小时和24小时采集四名健康个体的全身图像。在每个时间帧围绕源器官绘制感兴趣区域。每个感兴趣区域通过背景、衰减、散射辐射和物理衰变进行校正。利用图像序列外推每个器官的锝-艾塞那肽(9 - 39)/奥曲肽时间-活性曲线,以调整生物动力学模型并计算源区域发生的总衰变次数(N)。N数据作为OLINDA/EXM代码的输入,用于计算内照射剂量。此外,在一名疑似患有胰岛素瘤的患者中,在3小时时获得全身单光子发射计算机断层扫描/计算机断层扫描图像。
对于四名健康个体,血液活性的快速成分半衰期值为1.20分钟(T1/2α = ln 2 / 34.71),第一个缓慢成分半衰期为8.7分钟(T1/2β = ln 2 / 4.76),第二个缓慢成分半衰期为1.7小时(T1/2γ = ln 2 / 0.401)。对于一项使用555 MBq的研究,计算得出的肾脏、上大肠壁、下大肠壁、小肠和肝脏的平均当量剂量分别为15.10、4.13、3.08、2.61和1.90 mSv,有效剂量为2.33±0.51 mSv。此外,一名患者的图像显示在3小时时肿瘤/心脏(血液)平均比值为2.7。
所有吸收剂量与大多数锝研究中已知的剂量相当。从试剂盒制剂获得的锝-艾塞那肽(9 - 39)/奥曲肽在一名患有恶性病变的患者中显示出高肿瘤摄取,使其成为一种有前景的靶向GLP-1R和SSTR的成像放射性药物。