Lima Maria DO Carmo S, Cordeiro Gauss M, Nascimento Abraão D C, Silva Kássio F
Departamento de Estatística, Universidade Federal de Pernambuco, Cidade Universitária, Av. Prof. Moraes Rego, 1235, 50740-540 Recife, PE, Brazil.
An Acad Bras Cienc. 2017 Jul-Sep;89(3):1343-1367. doi: 10.1590/0001-3765201720160455.
New generators are required to define wider distributions for modeling real data in survival analysis. To that end we introduce the four-parameter generalized beta-generated Lindley distribution. It has explicit expressions for the ordinary and incomplete moments, mean deviations, generating and quantile functions. We propose a maximum likelihood procedure to estimate the model parameters, which is assessed through a Monte Carlo simulation study. We also derive an additional estimation scheme by means of least square between percentiles. The usefulness of the proposed distribution to describe remission times of cancer patients is illustrated by means of an application to real data.
在生存分析中,需要新的生成器来定义更广泛的分布以对实际数据进行建模。为此,我们引入了四参数广义贝塔生成的林德利分布。它具有普通矩和不完全矩、平均偏差、生成函数和分位数函数的显式表达式。我们提出了一种最大似然程序来估计模型参数,并通过蒙特卡罗模拟研究对其进行评估。我们还通过百分位数之间的最小二乘法推导了一种额外的估计方案。通过对实际数据的应用,说明了所提出的分布在描述癌症患者缓解时间方面的有用性。