Suppr超能文献

的长 3'UTR mRNA 对于 中自发释放的翻译依赖性可塑性至关重要。

The Long 3'UTR mRNA of Is Essential for Translation-Dependent Plasticity of Spontaneous Release in .

作者信息

Kuklin Elena A, Alkins Stephen, Bakthavachalu Baskar, Genco Maria C, Sudhakaran Indulekha, Raghavan K Vijay, Ramaswami Mani, Griffith Leslie C

机构信息

Department of Biology, Volen National Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454-9110.

National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India, and.

出版信息

J Neurosci. 2017 Nov 1;37(44):10554-10566. doi: 10.1523/JNEUROSCI.1313-17.2017. Epub 2017 Sep 27.

Abstract

A null mutation of the gene () was generated using homologous recombination. Null animals survive to larval and pupal stages due to a large maternal contribution of mRNA, which consists of a short 3'-untranslated region (UTR) form lacking regulatory elements that guide local translation. The selective loss of the long 3'UTR mRNA in -null larvae allows us to test its role in plasticity. Development and evoked function of the larval neuromuscular junction are surprisingly normal, but the resting rate of miniature excitatory junctional potentials (mEJPs) is significantly lower in mutants. Mutants also lack the ability to increase mEJP rate in response to spaced depolarization, a type of activity-dependent plasticity shown to require both transcription and translation. Consistent with this, overexpression of miR-289 in wild-type animals blocks plasticity of spontaneous release. In addition to the defects in regulation of mEJP rate, CaMKII protein is largely lost from synapses in the mutant. All phenotypes are non-sex-specific and rescued by a fosmid containing the entire wild-type locus, but only viability and CaMKII localization are rescued by genomic fosmids lacking the long 3'UTR. This suggests that synaptic CaMKII accumulates by two distinct mechanisms: local synthesis requiring the long 3'UTR form of mRNA and a process that requires zygotic transcription of mRNA. The origin of synaptic CaMKII also dictates its functionality. Locally translated CaMKII has a privileged role in regulation of spontaneous release, which cannot be fulfilled by synaptic CaMKII from the other pool. As a regulator of synaptic development and plasticity, CaMKII has important roles in both normal and pathological function of the nervous system. shows high conservation between and humans, underscoring the usefulness of in modeling its function. -null mutants remain viable throughout development, enabling morphological and electrophysiological characterization. Although the structure of the synapse is normal, maternally contributed CaMKII does not localize to synapses. Zygotic production of mRNA with a long 3'-untranslated region is necessary for modulating spontaneous neurotransmission in an activity-dependent manner, but not for viability. These data argue that regulation of CaMKII localization and levels by local transcriptional processes is conserved. This is the first demonstration of distinct functions for mRNA variants.

摘要

利用同源重组技术构建了该基因()的无效突变体。由于母源大量贡献的mRNA,无效突变动物能够存活至幼虫和蛹期,该mRNA由缺乏指导局部翻译调控元件的短3'非翻译区(UTR)形式组成。在-无效幼虫中长3'UTR mRNA的选择性缺失使我们能够测试其在可塑性方面的作用。幼虫神经肌肉接头的发育和诱发功能出人意料地正常,但在突变体中,微小兴奋性接头电位(mEJP)的静息率显著降低。突变体也缺乏响应间隔去极化增加mEJP率的能力,间隔去极化是一种已证明需要转录和翻译的活动依赖性可塑性。与此一致的是,在野生型动物中过表达miR-289会阻断自发释放的可塑性。除了mEJP率调节缺陷外,突变体突触中的CaMKII蛋白大量丢失。所有表型均无性别特异性,且可被包含整个野生型基因座的fosmid拯救,但只有活力和CaMKII定位可被缺乏长3'UTR的基因组fosmids拯救。这表明突触CaMKII通过两种不同机制积累:需要长3'UTR形式mRNA的局部合成以及需要mRNA合子转录的过程。突触CaMKII的来源也决定了其功能。局部翻译的CaMKII在调节自发释放中具有特殊作用,而来自另一池的突触CaMKII无法实现这一作用。作为突触发育和可塑性的调节因子,CaMKII在神经系统的正常和病理功能中均具有重要作用。显示在和人类之间具有高度保守性,突出了在模拟其功能方面的实用性。-无效突变体在整个发育过程中仍可存活,从而能够进行形态学和电生理学特征分析。虽然突触结构正常,但母源贡献的CaMKII不会定位于突触。具有长3'非翻译区的mRNA的合子产生对于以活动依赖性方式调节自发神经传递是必要的,但对活力并非必要。这些数据表明,通过局部转录过程对CaMKII定位和水平的调节是保守的。这是首次证明mRNA变体具有不同功能。

相似文献

1
The Long 3'UTR mRNA of Is Essential for Translation-Dependent Plasticity of Spontaneous Release in .
J Neurosci. 2017 Nov 1;37(44):10554-10566. doi: 10.1523/JNEUROSCI.1313-17.2017. Epub 2017 Sep 27.
2
Presynaptic CamKII regulates activity-dependent axon terminal growth.
Mol Cell Neurosci. 2016 Oct;76:33-41. doi: 10.1016/j.mcn.2016.08.007. Epub 2016 Aug 24.
3
mRNA at synapses, synaptic plasticity, and memory consolidation.
Neuron. 2002 Oct 24;36(3):338-40. doi: 10.1016/s0896-6273(02)01006-1.
4
Subunit-specific and homeostatic regulation of glutamate receptor localization by CaMKII in Drosophila neuromuscular junctions.
Neuroscience. 2010 Feb 17;165(4):1284-92. doi: 10.1016/j.neuroscience.2009.11.059. Epub 2009 Dec 1.
8
Cortactin Is a Regulator of Activity-Dependent Synaptic Plasticity Controlled by Wingless.
J Neurosci. 2017 Feb 22;37(8):2203-2215. doi: 10.1523/JNEUROSCI.1375-16.2017. Epub 2017 Jan 25.
10
The contribution of calcium/calmodulin-dependent protein-kinase II (CaMKII) to short-term plasticity at the neuromuscular junction.
Brain Res Bull. 2010 Apr 5;81(6):613-6. doi: 10.1016/j.brainresbull.2009.12.010. Epub 2010 Jan 4.

引用本文的文献

1
Control of Selective mRNA Translation in Neuronal Subcellular Compartments in Health and Disease.
J Neurosci. 2023 Nov 1;43(44):7247-7263. doi: 10.1523/JNEUROSCI.2240-22.2023.
2
Regulation of alternative splicing and polyadenylation in neurons.
Life Sci Alliance. 2023 Oct 4;6(12). doi: 10.26508/lsa.202302000. Print 2023 Dec.
5
Alterations of RNA-binding protein in neurons and glia influence synaptic transmission and lifespan.
Front Mol Neurosci. 2022 Nov 11;15:1006455. doi: 10.3389/fnmol.2022.1006455. eCollection 2022.
6
Local translation provides the asymmetric distribution of CaMKII required for associative memory formation.
Curr Biol. 2022 Jun 20;32(12):2730-2738.e5. doi: 10.1016/j.cub.2022.04.047. Epub 2022 May 10.
7
Pairing-Dependent Plasticity in a Dissected Fly Brain Is Input-Specific and Requires Synaptic CaMKII Enrichment and Nighttime Sleep.
J Neurosci. 2022 May 25;42(21):4297-4310. doi: 10.1523/JNEUROSCI.0144-22.2022. Epub 2022 Apr 26.
8
Regulation of the Alternative Neural Transcriptome by ELAV/Hu RNA Binding Proteins.
Front Genet. 2022 Feb 23;13:848626. doi: 10.3389/fgene.2022.848626. eCollection 2022.
9
A comparison of three different methods of eliciting rapid activity-dependent synaptic plasticity at the Drosophila NMJ.
PLoS One. 2021 Nov 30;16(11):e0260553. doi: 10.1371/journal.pone.0260553. eCollection 2021.
10
The Coordination of Local Translation, Membranous Organelle Trafficking, and Synaptic Plasticity in Neurons.
Front Cell Dev Biol. 2021 Jul 14;9:711446. doi: 10.3389/fcell.2021.711446. eCollection 2021.

本文引用的文献

1
Presynaptic CamKII regulates activity-dependent axon terminal growth.
Mol Cell Neurosci. 2016 Oct;76:33-41. doi: 10.1016/j.mcn.2016.08.007. Epub 2016 Aug 24.
2
Neural plasticity and behavior - sixty years of conceptual advances.
J Neurochem. 2016 Oct;139 Suppl 2:179-199. doi: 10.1111/jnc.13580. Epub 2016 Mar 10.
4
FlyBase: establishing a Gene Group resource for Drosophila melanogaster.
Nucleic Acids Res. 2016 Jan 4;44(D1):D786-92. doi: 10.1093/nar/gkv1046. Epub 2015 Oct 13.
5
Nucleus to Synapse Nesprin1 Railroad Tracks Direct Synapse Maturation through RNA Localization.
Neuron. 2015 May 20;86(4):1015-1028. doi: 10.1016/j.neuron.2015.04.006. Epub 2015 May 7.
7
Miniature neurotransmission regulates Drosophila synaptic structural maturation.
Neuron. 2014 May 7;82(3):618-34. doi: 10.1016/j.neuron.2014.03.012.
8
FMRP and Ataxin-2 function together in long-term olfactory habituation and neuronal translational control.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E99-E108. doi: 10.1073/pnas.1309543111. Epub 2013 Dec 16.
9
Spontaneous and evoked release are independently regulated at individual active zones.
J Neurosci. 2013 Oct 30;33(44):17253-63. doi: 10.1523/JNEUROSCI.3334-13.2013.
10
The roles of protein kinases in learning and memory.
Learn Mem. 2013 Sep 16;20(10):540-52. doi: 10.1101/lm.028449.112.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验