Suppr超能文献

基于承载单纯形上的边界动力学对三维竞争Leslie/Gower模型的等价分类

On the equivalent classification of three-dimensional competitive Leslie/Gower models via the boundary dynamics on the carrying simplex.

作者信息

Jiang Jifa, Niu Lei

机构信息

Mathematics and Science College, Shanghai Normal University, Shanghai, 200234, People's Republic of China.

出版信息

J Math Biol. 2017 Apr;74(5):1223-1261. doi: 10.1007/s00285-016-1052-y. Epub 2016 Sep 17.

Abstract

We study the asymptotic behavior of the competitive Leslie/Gower model (map) [Formula: see text]It is shown that T unconditionally admits a globally attracting 1-codimensional invariant hypersurface [Formula: see text], called carrying simplex, such that every nontrivial orbit is asymptotic to one in [Formula: see text]. More general and easily checked conditions to guarantee the existence of carrying simplex for competitive maps are provided. An equivalence relation is defined relative to local stability of fixed points on [Formula: see text] (the boundary of [Formula: see text]) on the space of all three-dimensional Leslie/Gower models. Using a formula on the sum of the indices of all fixed points on the carrying simplex for three-dimensional maps, we list the 33 stable equivalence classes in terms of simple inequalities on the parameters [Formula: see text] and [Formula: see text] and draw their orbits on [Formula: see text]. In classes 1-18, every nontrivial orbit tends to a fixed point on [Formula: see text]. In classes 19-25, each map possesses a unique positive fixed point which is a saddle on [Formula: see text], and hence Neimark-Sacker bifurcations do not occur. Neimark-Sacker bifurcation does occur within each of classes 26-31, while it does not occur in class 32. Each map from class 27 admits a heteroclinic cycle, which forms the boundary of [Formula: see text]. The criteria on the stability of heteroclinic cycles are also given. This classification makes it possible to further investigate various dynamical properties in respective class.

摘要

我们研究竞争型莱斯利/高尔模型(映射)[公式:见原文]的渐近行为。结果表明,T无条件地存在一个全局吸引的一维不变超曲面[公式:见原文],称为承载单纯形,使得每个非平凡轨道都渐近于[公式:见原文]中的一个轨道。我们给出了更一般且易于检验的保证竞争映射存在承载单纯形的条件。在所有三维莱斯利/高尔模型的空间中,相对于[公式:见原文]([公式:见原文]的边界)上不动点的局部稳定性定义了一个等价关系。利用三维映射在承载单纯形上所有不动点的指标和公式,我们根据参数[公式:见原文]和[公式:见原文]的简单不等式列出了33个稳定等价类,并绘制了它们在[公式:见原文]上的轨道。在1 - 18类中,每个非平凡轨道都趋向于[公式:见原文]上的一个不动点。在19 - 25类中,每个映射都有一个唯一的正不动点,它在[公式:见原文]上是鞍点,因此不会发生奈马克 - 萨克分岔。奈马克 - 萨克分岔在26 - 31类中的每一类中都会发生,而在32类中不会发生。27类中的每个映射都有一个异宿环,它构成了[公式:见原文]的边界。我们还给出了异宿环稳定性的判据。这种分类使得进一步研究各等价类中的各种动力学性质成为可能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验