Marschall Robert, Siegmund Ulrike, Burbank Joachim, Tudzynski Paul
Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms Universität, Schlossplatz 8, 48143 Münster, Germany.
Fungal Biol Biotechnol. 2016 Oct 7;3:8. doi: 10.1186/s40694-016-0026-6. eCollection 2016.
The production of reactive oxygen species (ROS) and a balanced redox homeostasis are essential parameters, which control the infection process of the plant pathogen . The necrotrophic fungus is able to cope with the plants' oxidative burst and even produces its own ROS to overcome the plants' defense barrier. Major enzyme complexes, which are responsible for the production of superoxide, are NADPH oxidase (Nox) complexes. They play a central role in various growth, differentiation and pathogenic processes. However, information about their regulation and the integration in the complex signaling network of filamentous fungi is still scarce.
In this work, we give an update on Nox structure, function, site of action and regulation. We show that functionality of the catalytic Nox-subunits seems to be independent from their transcriptional regulation and that the membrane orientation of BcNoxA would allow electron transport inside the ER. Following previous studies, which provided evidence for distinct functions of the NoxA complex inside the ER, we highlight in this work that the N-terminus of BcNoxA is essential for these functions. Finally, we elucidate the role of BcNoxD and BcNoxB inside the ER by complementing the deletion mutants with ER bound alleles.
This study provides a deeper analysis of the Nox complexes in . Besides new insights in the overall regulation of the complexes, we provide further evidence that the NoxA complex has a predominant role inside the ER, while the NoxB complex is mainly important outside the ER, likely at the plasma membrane. By considering all other putative Nox complex members, we propose a putative model, which describes the distinct complex pattern upon certain differentiation processes.
活性氧(ROS)的产生和平衡的氧化还原稳态是控制植物病原体感染过程的重要参数。坏死营养型真菌能够应对植物的氧化爆发,甚至产生自身的ROS以克服植物的防御屏障。负责产生超氧化物的主要酶复合物是NADPH氧化酶(Nox)复合物。它们在各种生长、分化和致病过程中发挥核心作用。然而,关于它们的调控以及在丝状真菌复杂信号网络中的整合的信息仍然很少。
在这项工作中,我们更新了关于Nox的结构、功能、作用位点和调控的信息。我们表明,催化性Nox亚基的功能似乎独立于其转录调控,并且BcNoxA的膜取向将允许电子在内质网内运输。继先前的研究为内质网内NoxA复合物的独特功能提供证据之后,我们在这项工作中强调,BcNoxA的N末端对于这些功能至关重要。最后,我们通过用内质网结合等位基因互补缺失突变体,阐明了BcNoxD和BcNoxB在内质网中的作用。
本研究对[具体研究对象]中的Nox复合物进行了更深入的分析。除了对复合物整体调控的新见解外,我们还提供了进一步的证据,表明NoxA复合物在内质网中起主要作用,而NoxB复合物主要在内质网外重要,可能在质膜上。通过考虑所有其他假定的Nox复合物成员,我们提出了一个假定模型,该模型描述了在某些分化过程中不同的复合物模式。