Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Mol Plant Microbe Interact. 2019 Nov;32(11):1508-1516. doi: 10.1094/MPMI-05-19-0124-R. Epub 2019 Sep 12.
During interactions, both plants and pathogens produce reactive oxygen species (ROS). Plants generate ROS for defense induction, while pathogens synthesize ROS for growth, sporulation, and virulence. NADPH oxidase (NOX) complex in the plasma membrane represents a main protein complex for ROS production in pathogens. Although NOX plays a crucial role in pathogenicity of pathogens, the underlying molecular mechanisms of NOX, especially the proteins regulated by NOX, remain largely unknown. Here, we applied an iodoacetyl tandem mass tag-based redox proteomic assay to investigate the protein redox dynamics in deletion mutant of , which encodes a regulatory subunit of NOX in the fungal pathogen . In total, 214 unique peptidyl cysteine (Cys) thiols from 168 proteins were identified and quantified in both the wild type and ∆ mutant. The Cys thiols in the ∆ mutant were generally more oxidized than those in the wild type, suggesting that BcNoxR is essential for maintaining the equilibrium of the redox state in . Site-specific thiol oxidation analysis indicated that 142 peptides containing the oxidized thiols changed abundance significantly in the ∆ mutant. Proteins containing these differential peptides are classified into various functional categories. Functional analysis revealed that one of these proteins, 6-phosphate dehydrogenase, played roles in oxidative stress response and pathogenesis of . These results provide insight into the potential target proteins and the ROS signal transduction pathway regulated by NOX.
在相互作用过程中,植物和病原体都会产生活性氧(ROS)。植物产生 ROS 以诱导防御,而病原体则合成 ROS 以促进生长、孢子形成和毒力。质膜中的 NADPH 氧化酶(NOX)复合物是病原体产生 ROS 的主要蛋白质复合物。尽管 NOX 在病原体的致病性中起着至关重要的作用,但 NOX 的潜在分子机制,特别是受 NOX 调节的蛋白质,在很大程度上仍然未知。在这里,我们应用基于碘乙酰胺串联质量标签的氧化还原蛋白质组学测定法来研究编码真菌病原体中的 NOX 调节亚基的缺失突变体中的蛋白质氧化还原动态。总共从 168 种蛋白质中鉴定和定量了野生型和 ∆突变体中 214 个独特的肽基半胱氨酸(Cys)巯基。与野生型相比, ∆突变体中的 Cys 巯基通常更容易被氧化,这表明 BcNoxR 对于维持在中的氧化还原状态平衡是必不可少的。特异性巯基氧化分析表明,在 ∆突变体中,有 142 个含有氧化巯基的肽段的丰度发生了显著变化。含有这些差异肽段的蛋白质被分类为各种功能类别。功能分析表明,这些蛋白质中的一种,即 6-磷酸脱氢酶,在氧化应激反应和的发病机制中发挥作用。这些结果为潜在的靶蛋白和受 NOX 调节的 ROS 信号转导途径提供了深入了解。