La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
WEHI, Parkville, Victoria, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
Biophys J. 2022 Nov 1;121(21):4063-4077. doi: 10.1016/j.bpj.2022.09.038. Epub 2022 Sep 30.
Insulin is a mainstay of therapy for diabetes mellitus, yet its thermal stability complicates global transportation and storage. Cold-chain transport, coupled with optimized formulation and materials, prevents to some degree nucleation of amyloid and hence inactivation of hormonal activity. These issues hence motivate the design of analogs with increased stability, with a promising approach being single-chain insulins (SCIs), whose C domains (foreshortened relative to proinsulin) resemble those of the single-chain growth factors (IGFs). We have previously demonstrated that optimized SCIs can exhibit native-like hormonal activity with enhanced thermal stability and marked resistance to fibrillation. Here, we describe the crystal structure of an ultrastable SCI (C-domain length 6; sequence EEGPRR) bound to modules of the insulin receptor (IR) ectodomain (N-terminal α-subunit domains L1-CR and C-terminal αCT peptide; "microreceptor" [μIR]). The structure of the SCI-μIR complex, stabilized by an Fv module, was determined using diffraction data to a resolution of 2.6 Å. Remarkably, the αCT peptide (IR-A isoform) "threads" through a gap between the flexible C domain and the insulin core. To explore such threading, we undertook molecular dynamics simulations to 1) compare threaded with unthreaded binding modes and 2) evaluate effects of C-domain length on these alternate modes. The simulations (employing both conventional and enhanced sampling simulations) provide evidence that very short linkers (C-domain length of -1) would limit gap opening in the SCI and so impair threading. We envisage that analogous threading occurs in the intact SCI-IR complex-rationalizing why minimal C-domain lengths block complete activity-and might be exploited to design novel receptor-isoform-specific analogs.
胰岛素是治疗糖尿病的主要药物,但它的热稳定性使得其在全球范围内的运输和储存变得复杂。冷链运输,加上优化的配方和材料,可以在一定程度上防止淀粉样蛋白的成核,从而避免激素活性的丧失。这些问题促使人们设计具有更高稳定性的类似物,其中一种有前途的方法是单链胰岛素 (SCI),其 C 结构域(相对于前胰岛素缩短)类似于单链生长因子 (IGF)。我们之前已经证明,优化后的 SCI 可以表现出类似天然的激素活性,同时具有增强的热稳定性和对纤维形成的显著抗性。在这里,我们描述了一种超稳定 SCI(C 结构域长度为 6;序列为 EEGPRR)与胰岛素受体 (IR) 胞外域模块(N 端 α 亚基结构域 L1-CR 和 C 端 αCT 肽;“微受体”[μIR])结合的晶体结构。使用衍射数据确定了 Fv 模块稳定的 SCI-μIR 复合物的结构,分辨率为 2.6 Å。值得注意的是,αCT 肽(IR-A 同工型)“穿过”灵活的 C 结构域和胰岛素核心之间的间隙。为了探索这种穿线,我们进行了分子动力学模拟,以 1) 比较穿线和未穿线的结合模式,以及 2) 评估 C 结构域长度对这些替代模式的影响。模拟(同时使用传统和增强采样模拟)提供了证据,表明非常短的接头(C 结构域长度为-1)会限制 SCI 中的间隙打开,从而阻碍穿线。我们设想,在完整的 SCI-IR 复合物中也会发生类似的穿线——这解释了为什么最小的 C 结构域长度会阻止完全的活性——并且可能被用来设计新的受体同工型特异性类似物。