Topno Nishith Saurav, Kannan Muthu, Krishna Ramadas
Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
Biochem Biophys Rep. 2015 Dec 4;5:180-190. doi: 10.1016/j.bbrep.2015.12.002. eCollection 2016 Mar.
Inhibitor of DNA binding protein 3 (ID3) has long been characterized as an oncogene that implicates its functional role through its Helix-Loop-Helix (HLH) domain upon protein-protein interaction. An insight into the dimerization brought by this domain helps in identifying the key residues that favor the mechanism behind it. Molecular dynamics (MD) simulations were performed for the HLH proteins ID3 and Transcription factor E2-alpha (E2A/E12) and their ensemble complex (ID3-E2A/E12) to gather information about the HLH domain region and its role in the interaction process. Further evaluation of the results by Principal Component Analysis (PCA) and Free Energy Landscape (FEL) helped in revealing residues of E2A/E12: Lys570, Ala595, Val598, and Ile599 and ID3: Glu53, Gln63, and Gln66 buried in their HLH motifs imparting key roles in dimerization process. Furthermore the T-pad analysis results helped in identifying the key fluctuations and conformational transitions using the intrinsic properties of the residues present in the domain region of the proteins thus specifying their crucial role towards molecular recognition. The study provides an insight into the interacting mechanism of the ID3-E2A/E12 complex and maps the structural transitions arising in the essential conformational space indicating the key structural changes within the helical regions of the motif. It thereby describes how the internal dynamics of the proteins might regulate their intrinsic structural features and its subsequent functionality.
DNA结合蛋白3(ID3)长期以来一直被认为是一种癌基因,它通过其螺旋-环-螺旋(HLH)结构域在蛋白质-蛋白质相互作用中发挥功能作用。深入了解该结构域引起的二聚化有助于确定有利于其背后机制的关键残基。对HLH蛋白ID3和转录因子E2-α(E2A/E12)及其整体复合物(ID3-E2A/E12)进行了分子动力学(MD)模拟,以收集有关HLH结构域区域及其在相互作用过程中作用的信息。通过主成分分析(PCA)和自由能景观(FEL)对结果进行进一步评估,有助于揭示E2A/E12的残基:Lys570、Ala595、Val598和Ile599以及ID3的残基:Glu53、Gln63和Gln66,它们埋藏在其HLH基序中,在二聚化过程中发挥关键作用。此外,T-pad分析结果有助于利用蛋白质结构域区域中存在的残基的内在特性识别关键波动和构象转变,从而确定它们对分子识别的关键作用。该研究深入了解了ID3-E2A/E12复合物的相互作用机制,并绘制了在基本构象空间中出现的结构转变,表明了基序螺旋区域内的关键结构变化。因此,它描述了蛋白质的内部动力学如何调节其内在结构特征及其随后的功能。