Agnihotri Pragati, Singh Saurabh P, Shakya Anil Kumar, Pratap J Venkatesh
Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, sector 10, Jankipuram Extension, Sitapur Road, Lucknow-226031, UP, India.
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
Biochem Biophys Rep. 2016 Aug 20;8:127-138. doi: 10.1016/j.bbrep.2016.08.016. eCollection 2016 Dec.
γ-glutamylcysteine synthetase (Gcs) is a vital enzyme catalyzing the first and rate limiting step in the trypanothione biosynthesis pathway, the ATP-dependent ligation of L-Glutamate and L-Cysteine to form gamma-glutamylcysteine. The Trypanothione biosynthesis pathway is unique metabolic pathway essential for trypanosomatid survival rendering Gcs as a potential drug target. Here we report the cloning, expression, purification and characterization of Gcs. Three other constructs of Gcs (GcsN, GcsC and GcsT) were designed on the basis of and Gcs crystal structures. The study shows Gcs possesses ATPase activity even in the absence of substrates L-glutamate and L-Cysteine. Divalent ions however plays an indispensable role in LdGcs ATPase activity. Isothermal titration calorimetry and fluorescence studies illustrates that Gcs binds substrate in order ATP >L-glutamate>L-cysteine with Glu 92 and Arg 498 involved in ATP hydrolysis and Glu 92, Glu 55 and Arg 498 involved in glutamate binding. Homology modeling and molecular dynamic simulation studies provided the structural rationale of LdGcs catalytic activity and emphasized on the possibility of involvement of three Mg ions along with Glutamates 52, 55, 92, 99, Met 322, Gln 328, Tyr 397, Lys 483, Arg 494 and Arg 498 in the catalytic function of Gcs.
γ-谷氨酰半胱氨酸合成酶(Gcs)是一种至关重要的酶,它催化锥虫硫醇生物合成途径中的第一步且是限速步骤,即依赖ATP将L-谷氨酸和L-半胱氨酸连接形成γ-谷氨酰半胱氨酸。锥虫硫醇生物合成途径是锥虫生存所必需的独特代谢途径,这使得Gcs成为一个潜在的药物靶点。在此,我们报告了Gcs的克隆、表达、纯化及特性鉴定。基于Gcs的晶体结构设计了另外三种Gcs构建体(GcsN、GcsC和GcsT)。研究表明,即使在没有底物L-谷氨酸和L-半胱氨酸的情况下,Gcs也具有ATP酶活性。然而,二价离子在LdGcs的ATP酶活性中起着不可或缺的作用。等温滴定量热法和荧光研究表明,Gcs与底物的结合顺序为ATP>L-谷氨酸>L-半胱氨酸,其中Glu 92和Arg 498参与ATP水解,Glu 92、Glu 55和Arg 498参与谷氨酸结合。同源建模和分子动力学模拟研究提供了LdGcs催化活性的结构原理,并强调了三个镁离子以及谷氨酸52、55、92、99、甲硫氨酸322、谷氨酰胺328、酪氨酸397、赖氨酸483、精氨酸494和精氨酸498可能参与Gcs催化功能的可能性。