Quantum-Nano Centre, Department of Chemical Engineering, University of Waterloo , Waterloo N2L 3G1, Ontario, Canada.
Centre for Nano and Material Sciences, Jain University , Jain Global Campus, Kanakapura, Ramangaram, Bangalore 562112, India.
ACS Nano. 2017 Oct 24;11(10):10077-10087. doi: 10.1021/acsnano.7b04467. Epub 2017 Oct 3.
A major stumbling block in the development of high energy density graphene-based supercapacitors has been maintaining high ion-accessible surface area combined with high electrode density. Herein, we develop an ionic liquid (IL)-surfactant microemulsion system that is found to facilitate the spontaneous adsorption of IL-filled micelles onto graphene oxide (GO). This adsorption distributes the IL over all available surface area and provides an aqueous formulation that can be slurry cast onto current collectors, leaving behind a dense nanocomposite film of GO/IL/surfactant. By removing the surfactant and reducing the GO through a low-temperature (360 °C) heat treatment, the IL plays a dual role of spacer and electrolyte. We study the effect of IL content and operating temperature on the performance, demonstrating a record high gravimetric capacitance (302 F/g at 1 A/g) for 80 wt % IL composites. At 60 wt % IL, combined high capacitance and bulk density (0.76 g/cm), yields one of the highest volumetric capacitances (218 F/cm, at 1 A/g) ever reported for a high-voltage IL-based supercapacitor. While achieving promising rate performance and cycle-life, the approach also eliminates the long and costly electrolyte imbibition step of cell assembly as the electrolyte is cast directly with the electrode material.
在开发高能量密度基于石墨烯的超级电容器的过程中,一个主要的障碍是如何保持高离子可及表面积与高电极密度的结合。在此,我们开发了一种离子液体(IL)-表面活性剂微乳液体系,该体系被发现有利于 IL 填充胶束自发吸附到氧化石墨烯(GO)上。这种吸附将 IL 分布在所有可用的表面积上,并提供了一种可以浆料浇铸到集电器上的水性配方,留下 GO/IL/表面活性剂的致密纳米复合膜。通过去除表面活性剂并通过低温(360°C)热处理还原 GO,IL 起到了间隔物和电解质的双重作用。我们研究了 IL 含量和操作温度对性能的影响,对于 80wt%IL 复合材料,展示了创纪录的高重量比电容(302F/g 在 1A/g 时)。在 60wt%IL 的情况下,结合高电容和体密度(0.76g/cm3),产生了基于 IL 的超级电容器的最高体积电容之一(218F/cm,在 1A/g 时),这是迄今为止报道的最高电压 IL 超级电容器之一。该方法在实现有前景的倍率性能和循环寿命的同时,还消除了电池组装中电解质浸渍这一漫长而昂贵的步骤,因为电解质可以直接与电极材料一起浇铸。