The State Key Laboratory for New Ceramics & Fine Processing, School of Materials Science & Engineering, Tsinghua University , Beijing, China , 100084.
High-Tech Institute of Xi'an , Xi'an 710025, China.
ACS Appl Mater Interfaces. 2017 Oct 18;9(41):36327-36337. doi: 10.1021/acsami.7b12903. Epub 2017 Oct 9.
Scientific advancement is highly inspired and imitative of natural phenomenon's, which exhibits extremely developed and well-organized nanostructures to cope with challenges under different environmental circumstances, such as moth eyes protuberances for efficient antireflective (AR) performance. Innovative researches have been performed in the past to exterminate the undesirable reflectance in common optical components and optoelectronic industrial applications by biomimetic and replicating moth eye nanostructures creating gradient effect using metal oxides, composites, or polymers in multilayer AR coatings. However, in few multilayer AR designs, the properties mismatch at interfaces, high cost, low mechanical durability, wetting issues, or thermal stability bounds their practical applicability. Herein, we develop an approach for fabricating efficient, high-performance Teflon (polytetrafluoroethylene [PTFE]) AR nanostructures for glass-based supporting materials. Nanotailoring, the morphology and structure of PTFE, have been efficaciously carried out for fabricating high-performance AR coatings according to predicted optical simulation. The total reflectance from polymer AR coating lessens to <0.05% in a visible wavelength range which according to our best knowledge seems to be the superior AR performance by a polymer coating ever reported. Furthermore, the fabricated polymer AR coatings are omnidirectional, mechanically durable, and thermally stable up to 200 °C. Moreover, we modify and tune the refractive index of PTFE from 1.34 to 1.156 by inducing porosity and changing deposition angle.
科学的进步深受自然现象的启发和模仿,这些现象展示了极其发达和组织良好的纳米结构,以应对不同环境情况下的挑战,例如蛾眼突起以实现高效的抗反射(AR)性能。过去已经进行了创新性的研究,通过仿生和复制蛾眼纳米结构,在常见的光学元件和光电工业应用中消除不需要的反射率,使用金属氧化物、复合材料或聚合物在多层 AR 涂层中创建梯度效应。然而,在少数多层 AR 设计中,界面处的性质不匹配、高成本、低机械耐久性、润湿性问题或热稳定性限制了它们的实际应用。在此,我们开发了一种用于制造基于玻璃的支撑材料的高效、高性能聚四氟乙烯(PTFE)AR 纳米结构的方法。根据预测的光学模拟,对 PTFE 的纳米形貌和结构进行了有效的处理,以制造高性能的 AR 涂层。聚合物 AR 涂层的总反射率在可见光范围内降低到<0.05%,据我们所知,这似乎是聚合物涂层有史以来报道的卓越的 AR 性能。此外,所制造的聚合物 AR 涂层具有各向同性、机械耐用性和高达 200°C 的热稳定性。此外,我们通过诱导多孔性和改变沉积角度将 PTFE 的折射率从 1.34 调节至 1.156。