Mote Nilesh R, Patel Ketan, Shinde Dinesh R, Gaikwad Shahaji R, Koshti Vijay S, Gonnade Rajesh G, Chikkali Samir H
Polyolefin Lab, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune-411008, India.
Central NMR facility, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune-411008, India.
Inorg Chem. 2017 Oct 16;56(20):12448-12456. doi: 10.1021/acs.inorgchem.7b01923. Epub 2017 Sep 28.
Self-assembly of two neutral ligands on a metal to mimic bidentate ligand coordination has been frequently encountered in the recent past, but self-assembly of an anionic ligand on a metal template alongside a neutral ligand remains an elusive target. Such a self-assembly is hampered by additional complexity, wherein a highly negatively charged anion can form intermolecular hydrogen bonding with the supramolecular motif, leaving no scope for self-assembly with neutral ligand. Presented here is the self-association of anionic ligand 3-ureidobenzoic acid (2a) and neutral ligand 1-(3-(diphenylphosphanyl)phenyl)urea (1a) on a metal template to yield metal complex [{COOCHNH(CO)NH}{PhPCHNH(CO)NH}PdMeDMSO] (4a). The identity of 4a was established by NMR and mass spectroscopy. Along the same lines, 3-(3-phenylureido)benzoic acid (2b) and 1-(3-(diphenylphosphanyl)phenyl)-3-phenylurea (1b) self-assemble on a metal template to produce palladium complex [{COOCHNH(CO)NHPh}{PhPCHNH(CO)NHPh}PdMePy] (5c). The existence of 5c was confirmed by Job plot, 1-2D NMR spectroscopy, deuterium labeling, IR spectroscopy, UV-vis spectroscopy, model complex synthesis, and DFT calculations. These solution and gas phase investigations authenticated the presence of intramolecular hydrogen bonding between hydrogen's of 1b and carbonyl oxygen of 2b. The generality of the supramolecular approach has been validated by preparing six complexes from four monodentate ligands, and their synthetic utility was demonstrated in ethylene polymerization. Complex 4a was found to be the most active, leading to the production of highly branched polyethylene with a molecular weight of 55700 g/mol and melting temperature of 112 °C.
近期,金属上两个中性配体的自组装以模拟双齿配体配位的情况屡见不鲜,但在金属模板上阴离子配体与中性配体的自组装仍是一个难以实现的目标。这种自组装因额外的复杂性而受阻,其中高度带负电荷的阴离子会与超分子基序形成分子间氢键,从而没有与中性配体自组装的空间。本文展示了阴离子配体3-脲基苯甲酸(2a)和中性配体1-(3-(二苯基膦基)苯基)脲(1a)在金属模板上的自缔合,生成金属配合物[{COOCHNH(CO)NH}{PhPCHNH(CO)NH}PdMeDMSO](4a)。4a的结构通过核磁共振和质谱得以确定。同样地,3-(3-苯基脲基)苯甲酸(2b)和1-(3-(二苯基膦基)苯基)-3-苯基脲(1b)在金属模板上自组装,生成钯配合物[{COOCHNH(CO)NHPh}{PhPCHNH(CO)NHPh}PdMePy](5c)。5c的存在通过Job曲线、1-2D核磁共振光谱、氘标记、红外光谱、紫外-可见光谱、模型配合物合成以及密度泛函理论计算得以证实。这些溶液和气相研究证实了1b的氢与2b的羰基氧之间存在分子内氢键。通过由四个单齿配体制备六种配合物,验证了超分子方法的通用性,并在乙烯聚合反应中展示了其合成效用。发现配合物4a活性最高,可生成分子量为55700 g/mol、熔点为112 °C的高度支化聚乙烯。