Brauswetter Diána, Gurbi Bianka, Varga Attila, Várkondi Edit, Schwab Richárd, Bánhegyi Gábor, Fábián Orsolya, Kéri György, Vályi-Nagy István, Peták István
MTA-SE Pathobiochemistry Research Group, Budapest, Hungary.
Oncompass Medicine Ltd., Budapest, Hungary.
PLoS One. 2017 Sep 28;12(9):e0185687. doi: 10.1371/journal.pone.0185687. eCollection 2017.
Pancreatic cancer is an increasing cause of cancer related death worldwide. KRAS is the dominant oncogene in this cancer type and molecular rationale would indicate, that inhibitors of the downstream target MEK could be appropriate targeted agents, but clinical trials have failed so far to achieve statistically significant benefit in unselected patients. We aimed to identify predictive molecular biomarkers that can help to define subgroups where MEK inhibitors might be beneficial alone or in combination. Next-generation sequencing data of 50 genes in three pancreatic cancer cell lines (MiaPaCa2, BxPC3 and Panc1) were analyzed and compared to the molecular profile of 138 clinical pancreatic cancer samples to identify the molecular subtypes of pancreatic cancer these cell lines represent. Luminescent cell viability assay was used to determine the sensitivity of cell lines to kinase inhibitors. Western blot was used to analyze the pathway activity of the examined cell lines. According to our cell viability and pathway activity data on these model cell lines only cells harboring the rare G12C KRAS mutation and low EGFR expression are sensitive to single MEK inhibitor (trametinib) treatment. The common G12D KRAS mutation leads to elevated baseline Akt activity, thus treatment with single MEK inhibitors fails. However, combination of MEK and Akt inhibitors are synergistic in this case. In case of wild-type KRAS and high EGFR expression MEK inhibitor induced Akt phosphorylation leads to trametinib resistance which necessitates for MEK and EGFR or Akt inhibitor combination treatment. In all we provide strong preclinical rational and possible molecular mechanism to revisit MEK inhibitor therapy in pancreatic cancer in both monotherapy and combination, based on molecular profile analysis of pancreatic cancer samples and cell lines. According to our most remarkable finding, a small subgroup of patients with G12C KRAS mutation may still benefit from MEK inhibitor monotherapy.
胰腺癌是全球癌症相关死亡人数不断增加的一个原因。KRAS是这种癌症类型中的主要致癌基因,从分子理论角度来看,下游靶点MEK的抑制剂可能是合适的靶向药物,但迄今为止,临床试验在未经过筛选的患者中未能取得具有统计学意义的益处。我们旨在确定预测性分子生物标志物,以帮助定义MEK抑制剂单独使用或联合使用可能有益的亚组。分析了三种胰腺癌细胞系(MiaPaCa2、BxPC3和Panc1)中50个基因的二代测序数据,并将其与138例临床胰腺癌样本的分子特征进行比较,以确定这些细胞系所代表的胰腺癌分子亚型。采用发光细胞活力测定法来确定细胞系对激酶抑制剂的敏感性。使用蛋白质免疫印迹法分析所检测细胞系的信号通路活性。根据我们在这些模型细胞系上获得的细胞活力和信号通路活性数据,只有携带罕见的G12C KRAS突变且表皮生长因子受体(EGFR)表达较低的细胞对单一MEK抑制剂(曲美替尼)治疗敏感。常见的G12D KRAS突变会导致Akt基线活性升高,因此单一MEK抑制剂治疗无效。然而,在这种情况下,MEK和Akt抑制剂联合使用具有协同作用。在KRAS野生型且EGFR高表达的情况下,MEK抑制剂诱导的Akt磷酸化会导致对曲美替尼耐药,这就需要MEK与EGFR或Akt抑制剂联合治疗。总之,基于对胰腺癌样本和细胞系的分子特征分析,我们提供了强有力的临床前理论依据和可能的分子机制,以重新审视MEK抑制剂在胰腺癌单药治疗和联合治疗中的应用。根据我们最显著的发现,一小部分携带G12C KRAS突变的患者可能仍能从MEK抑制剂单药治疗中获益。