Suppr超能文献

新诊断帕金森病患者运动进展的临床和遗传预测因素的大规模识别:一项纵向队列研究及验证

Large-scale identification of clinical and genetic predictors of motor progression in patients with newly diagnosed Parkinson's disease: a longitudinal cohort study and validation.

作者信息

Latourelle Jeanne C, Beste Michael T, Hadzi Tiffany C, Miller Robert E, Oppenheim Jacob N, Valko Matthew P, Wuest Diane M, Church Bruce W, Khalil Iya G, Hayete Boris, Venuto Charles S

机构信息

GNS Healthcare, Cambridge, MA, USA.

GNS Healthcare, Cambridge, MA, USA.

出版信息

Lancet Neurol. 2017 Nov;16(11):908-916. doi: 10.1016/S1474-4422(17)30328-9. Epub 2017 Sep 25.

Abstract

BACKGROUND

Better understanding and prediction of progression of Parkinson's disease could improve disease management and clinical trial design. We aimed to use longitudinal clinical, molecular, and genetic data to develop predictive models, compare potential biomarkers, and identify novel predictors for motor progression in Parkinson's disease. We also sought to assess the use of these models in the design of treatment trials in Parkinson's disease.

METHODS

A Bayesian multivariate predictive inference platform was applied to data from the Parkinson's Progression Markers Initiative (PPMI) study (NCT01141023). We used genetic data and baseline molecular and clinical variables from patients with Parkinson's disease and healthy controls to construct an ensemble of models to predict the annual rate of change in combined scores from the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts II and III. We tested our overall explanatory power, as assessed by the coefficient of determination (R), and replicated novel findings in an independent clinical cohort from the Longitudinal and Biomarker Study in Parkinson's disease (LABS-PD; NCT00605163). The potential utility of these models for clinical trial design was quantified by comparing simulated randomised placebo-controlled trials within the out-of-sample LABS-PD cohort.

FINDINGS

117 healthy controls and 312 patients with Parkinson's disease from the PPMI study were available for analysis, and 317 patients with Parkinson's disease from LABS-PD were available for validation. Our model ensemble showed strong performance within the PPMI cohort (five-fold cross-validated R 41%, 95% CI 35-47) and significant-albeit reduced-performance in the LABS-PD cohort (R 9%, 95% CI 4-16). Individual predictive features identified from PPMI data were confirmed in the LABS-PD cohort. These included significant replication of higher baseline MDS-UPDRS motor score, male sex, and increased age, as well as a novel Parkinson's disease-specific epistatic interaction, all indicative of faster motor progression. Genetic variation was the most useful predictive marker of motor progression (2·9%, 95% CI 1·5-4·3). CSF biomarkers at baseline showed a more modest (0·3%, 95% CI 0·1-0·5) but still significant effect on prediction of motor progression. The simulations (n=5000) showed that incorporating the predicted rates of motor progression (as assessed by the annual change in MDS-UPDRS score) into the final models of treatment effect reduced the variability in the study outcome, allowing significant differences to be detected at sample sizes up to 20% smaller than in naive trials.

INTERPRETATION

Our model ensemble confirmed established and identified novel predictors of Parkinson's disease motor progression. Improvement of existing prognostic models through machine-learning approaches should benefit trial design and evaluation, as well as clinical disease monitoring and treatment.

FUNDING

Michael J Fox Foundation for Parkinson's Research and National Institute of Neurological Disorders and Stroke.

摘要

背景

更好地理解和预测帕金森病的进展可以改善疾病管理和临床试验设计。我们旨在利用纵向临床、分子和遗传数据来开发预测模型,比较潜在的生物标志物,并识别帕金森病运动进展的新预测因子。我们还试图评估这些模型在帕金森病治疗试验设计中的应用。

方法

将贝叶斯多变量预测推理平台应用于帕金森病进展标志物倡议(PPMI)研究(NCT01141023)的数据。我们使用帕金森病患者和健康对照的遗传数据以及基线分子和临床变量构建一组模型,以预测运动障碍协会统一帕金森病评定量表(MDS-UPDRS)第二部分和第三部分综合评分的年变化率。我们测试了整体解释力(通过决定系数R评估),并在帕金森病纵向和生物标志物研究(LABS-PD;NCT00605163)的独立临床队列中重复了新发现。通过比较LABS-PD队列样本外模拟随机安慰剂对照试验,量化了这些模型在临床试验设计中的潜在效用。

结果

PPMI研究中的117名健康对照和312名帕金森病患者可用于分析,LABS-PD中的317名帕金森病患者可用于验证。我们的模型组在PPMI队列中表现出强大的性能(五重交叉验证R为41%,95%CI为35-47),在LABS-PD队列中表现显著但有所降低(R为9%,95%CI为4-16)。从PPMI数据中识别出的个体预测特征在LABS-PD队列中得到了证实。这些特征包括较高的基线MDS-UPDRS运动评分、男性性别和年龄增加的显著重复,以及一种新的帕金森病特异性上位相互作用,所有这些都表明运动进展更快。基因变异是运动进展最有用的预测标志物(2.9%,95%CI为1.5-4.3)。基线时的脑脊液生物标志物对运动进展预测的影响较小(0.3%,95%CI为0.1-0.5),但仍具有显著意义。模拟(n=5000)表明,将预测的运动进展率(通过MDS-UPDRS评分的年变化评估)纳入治疗效果的最终模型中,可降低研究结果的变异性,使得在样本量比单纯试验小20%的情况下仍能检测到显著差异。

解读

我们的模型组证实了已有的帕金森病运动进展预测因子,并识别出了新的预测因子。通过机器学习方法改进现有的预后模型应有助于试验设计和评估,以及临床疾病监测和治疗。

资助

迈克尔·J·福克斯帕金森病研究基金会和美国国立神经疾病和中风研究所。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95c0/5693218/f9189d339768/nihms910076f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验