Suppr超能文献

系统蛋白质组学方法探索 NHERF1 在人类生殖障碍中的新功能:探索缺失蛋白质的启示。

Systematic Proteogenomic Approach To Exploring a Novel Function for NHERF1 in Human Reproductive Disorder: Lessons for Exploring Missing Proteins.

机构信息

Yonsei Proteome Research Center, Yonsei University , Seoul 03722, South Korea.

Department of Integrated OMICS for Biomedical Science, Yonsei University , Seoul 03722, South Korea.

出版信息

J Proteome Res. 2017 Dec 1;16(12):4455-4467. doi: 10.1021/acs.jproteome.7b00146. Epub 2017 Nov 1.

Abstract

One of the major goals of the Chromosome-Centric Human Proteome Project (C-HPP) is to fill the knowledge gaps between human genomic information and the corresponding proteomic information. These gaps are due to "missing" proteins (MPs)-predicted proteins with insufficient evidence from mass spectrometry (MS), biochemical, structural, or antibody analyses-that currently account for 2579 of the 19587 predicted human proteins (neXtProt, 2017-01). We address some of the lessons learned from the inconsistent annotations of missing proteins in databases (DB) and demonstrate a systematic proteogenomic approach designed to explore a potential new function of a known protein. To illustrate a cautious and strategic approach for characterization of novel function in vitro and in vivo, we present the case of Na(+)/H(+) exchange regulatory cofactor 1 (NHERF1/SLC9A3R1, located at chromosome 17q25.1; hereafter NHERF1), which was mistakenly labeled as an MP in one DB (Global Proteome Machine Database; GPMDB, 2011-09 release) but was well known in another public DB and in the literature. As a first step, NHERF1 was determined by MS and immunoblotting for its molecular identity. We next investigated the potential new function of NHERF1 by carrying out the quantitative MS profiling of placental trophoblasts (PXD004723) and functional study of cytotrophoblast JEG-3 cells. We found that NHERF1 was associated with trophoblast differentiation and motility. To validate this newly found cellular function of NHERF1, we used the Caenorhabditis elegans mutant of nrfl-1 (a nematode ortholog of NHERF1), which exhibits a protruding vulva (Pvl) and egg-laying-defective phenotype, and performed genetic complementation work. The nrfl-1 mutant was almost fully rescued by the transfection of the recombinant transgenic construct that contained human NHERF1. These results suggest that NHERF1 could have a previously unknown function in pregnancy and in the development of human embryos. Our study outlines a stepwise experimental platform to explore new functions of ambiguously denoted candidate proteins and scrutinizes the mandated DB search for the selection of MPs to study in the future.

摘要

人类蛋白质组计划(HPP)的一个主要目标是填补人类基因组信息与相应蛋白质组信息之间的知识空白。这些空白是由于“缺失”蛋白质(MPs)——通过质谱(MS)、生化、结构或抗体分析得出的预测蛋白质,但证据不足,目前占 19587 个预测人类蛋白质中的 2579 个(NextProt,2017-01)。我们总结了从数据库(DB)中缺失蛋白质不一致注释中吸取的一些经验教训,并展示了一种系统的蛋白质组学方法,旨在探索已知蛋白质的潜在新功能。为了说明在体外和体内鉴定新功能的谨慎和策略性方法,我们提出了 Na(+)/H(+)交换调节协同因子 1(NHERF1/SLC9A3R1,位于 17q25.1 号染色体;以下简称 NHERF1)的案例,该蛋白在一个 DB(全球蛋白质组机器数据库;GPMDB,2011-09 版)中被错误标记为 MPs,但在另一个公共 DB 和文献中广为人知。作为第一步,通过 MS 和免疫印迹确定 NHERF1 的分子身份。接下来,我们通过对胎盘滋养层(PXD004723)进行定量 MS 分析和对滋养细胞 JEG-3 细胞进行功能研究,研究了 NHERF1 的潜在新功能。我们发现 NHERF1 与滋养层分化和运动有关。为了验证 NHERF1 新发现的细胞功能,我们使用了线虫 NHERF1 的同源物 nrfl-1 的突变体(线虫 NHERF1 的同源物),该突变体表现出突出的阴道(Pvl)和产卵缺陷表型,并进行了遗传互补工作。nrfl-1 突变体通过转染包含人 NHERF1 的重组转基因构建体几乎完全得到拯救。这些结果表明,NHERF1 可能在妊娠和人类胚胎发育中具有以前未知的功能。我们的研究概述了一个逐步的实验平台,用于探索有疑问的候选蛋白的新功能,并仔细审查了强制性的 DB 搜索,以选择未来要研究的 MPs。

相似文献

1
2
Integrated Proteomic Pipeline Using Multiple Search Engines for a Proteogenomic Study with a Controlled Protein False Discovery Rate.
J Proteome Res. 2016 Nov 4;15(11):4082-4090. doi: 10.1021/acs.jproteome.6b00376. Epub 2016 Aug 30.
3
Proteogenomics in the context of the Human Proteome Project (HPP).
Expert Rev Proteomics. 2019 Mar;16(3):267-275. doi: 10.1080/14789450.2019.1571916. Epub 2019 Jan 28.
4
Cortical stabilization of beta-catenin contributes to NHERF1/EBP50 tumor suppressor function.
Oncogene. 2007 Aug 9;26(36):5290-9. doi: 10.1038/sj.onc.1210336. Epub 2007 Feb 26.
6
Launching the C-HPP neXt-CP50 Pilot Project for Functional Characterization of Identified Proteins with No Known Function.
J Proteome Res. 2018 Dec 7;17(12):4042-4050. doi: 10.1021/acs.jproteome.8b00383. Epub 2018 Nov 29.
7
GenomewidePDB 2.0: A Newly Upgraded Versatile Proteogenomic Database for the Chromosome-Centric Human Proteome Project.
J Proteome Res. 2015 Sep 4;14(9):3710-9. doi: 10.1021/acs.jproteome.5b00541. Epub 2015 Aug 19.
8
A chromosome-centric human proteome project (C-HPP) to characterize the sets of proteins encoded in chromosome 17.
J Proteome Res. 2013 Jan 4;12(1):45-57. doi: 10.1021/pr300985j. Epub 2012 Dec 21.

引用本文的文献

1
Proteogenomic Gene Structure Validation in the Pineapple Genome.
J Proteome Res. 2024 May 3;23(5):1583-1592. doi: 10.1021/acs.jproteome.3c00675. Epub 2024 Apr 23.
2
ERM-1 Phosphorylation and NRFL-1 Redundantly Control Lumen Formation in the Intestine.
Front Cell Dev Biol. 2022 Feb 7;10:769862. doi: 10.3389/fcell.2022.769862. eCollection 2022.
3
Reflections on the HUPO Human Proteome Project, the Flagship Project of the Human Proteome Organization, at 10 Years.
Mol Cell Proteomics. 2021;20:100062. doi: 10.1016/j.mcpro.2021.100062. Epub 2021 Feb 26.
4
Launching the C-HPP neXt-CP50 Pilot Project for Functional Characterization of Identified Proteins with No Known Function.
J Proteome Res. 2018 Dec 7;17(12):4042-4050. doi: 10.1021/acs.jproteome.8b00383. Epub 2018 Nov 29.
5
Progress on Identifying and Characterizing the Human Proteome: 2018 Metrics from the HUPO Human Proteome Project.
J Proteome Res. 2018 Dec 7;17(12):4031-4041. doi: 10.1021/acs.jproteome.8b00441. Epub 2018 Aug 23.
6
Advances in the Chromosome-Centric Human Proteome Project: looking to the future.
Expert Rev Proteomics. 2017 Dec;14(12):1059-1071. doi: 10.1080/14789450.2017.1394189. Epub 2017 Nov 10.

本文引用的文献

1
Progress in the Chromosome-Centric Human Proteome Project as Highlighted in the Annual Special Issue IV.
J Proteome Res. 2016 Nov 4;15(11):3945-3950. doi: 10.1021/acs.jproteome.6b00803.
2
Human Proteome Project Mass Spectrometry Data Interpretation Guidelines 2.1.
J Proteome Res. 2016 Nov 4;15(11):3961-3970. doi: 10.1021/acs.jproteome.6b00392. Epub 2016 Aug 24.
5
The endocrine function of human placenta: an overview.
Reprod Biomed Online. 2016 Jan;32(1):14-43. doi: 10.1016/j.rbmo.2015.10.005. Epub 2015 Oct 27.
6
What is the placenta?
Am J Obstet Gynecol. 2015 Oct;213(4 Suppl):S6.e1, S6-8. doi: 10.1016/j.ajog.2015.07.050.
7
Recent Advances in the Chromosome-Centric Human Proteome Project: Missing Proteins in the Spot Light.
J Proteome Res. 2015 Sep 4;14(9):3409-14. doi: 10.1021/acs.jproteome.5b00785.
8
GenomewidePDB 2.0: A Newly Upgraded Versatile Proteogenomic Database for the Chromosome-Centric Human Proteome Project.
J Proteome Res. 2015 Sep 4;14(9):3710-9. doi: 10.1021/acs.jproteome.5b00541. Epub 2015 Aug 19.
10
Distinct Protein Expression Profiles of Solid-Pseudopapillary Neoplasms of the Pancreas.
J Proteome Res. 2015 Aug 7;14(8):3007-14. doi: 10.1021/acs.jproteome.5b00423. Epub 2015 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验