Suppr超能文献

用于研究可充电电池中材料电化学的同步辐射 X 射线分析技术。

Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries.

机构信息

Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States.

Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Menlo Park, California 94035, United States.

出版信息

Chem Rev. 2017 Nov 8;117(21):13123-13186. doi: 10.1021/acs.chemrev.7b00007. Epub 2017 Sep 29.

Abstract

Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage. The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials. There are, however, still intimidating challenges of lower cost, longer cycle and calendar life, higher energy density, and better safety for large scale energy storage and vehicular applications. Further progress with rechargeable batteries may require new chemistries (lithium ion batteries and beyond) and better understanding of materials electrochemistry in the various battery technologies. In the past decade, advancement of battery materials has been complemented by new analytical techniques that are capable of probing battery chemistries at various length and time scales. Synchrotron X-ray techniques stand out as one of the most effective methods that allow for nearly nondestructive probing of materials characteristics such as electronic and geometric structures with various depth sensitivities through spectroscopy, scattering, and imaging capabilities. This article begins with the discussion of various rechargeable batteries and associated important scientific questions in the field, followed by a review of synchrotron X-ray based analytical tools (scattering, spectroscopy, and imaging) and their successful applications (ex situ, in situ, and in operando) in gaining fundamental insights into these scientific questions. Furthermore, electron microscopy and spectroscopy complement the detection length scales of synchrotron X-ray tools and are also discussed toward the end. We highlight the importance of studying battery materials by combining analytical techniques with complementary length sensitivities, such as the combination of X-ray absorption spectroscopy and electron spectroscopy with spatial resolution, because a sole technique may lead to biased and inaccurate conclusions. We then discuss the current progress of experimental design for synchrotron experiments and methods to mitigate beam effects. Finally, a perspective is provided to elaborate how synchrotron techniques can impact the development of next-generation battery chemistries.

摘要

可充电电池技术在当代社会引发了重大突破,包括但不限于交通、电子和电网储能领域的革命。可充电电池的显著发展在很大程度上归因于深入努力改善电池电极和电解质材料。然而,对于大规模储能和车辆应用而言,仍然存在降低成本、延长循环和日历寿命、提高能量密度以及提高安全性等艰巨挑战。进一步发展可充电电池可能需要新的化学物质(锂离子电池及其他),并更好地理解各种电池技术中材料的电化学。在过去十年中,电池材料的进步得到了新分析技术的补充,这些技术能够在各种长度和时间尺度上探测电池化学。同步加速器 X 射线技术是最有效的方法之一,它具有光谱、散射和成像功能,可以实现对材料特性(如电子和几何结构)的几乎无损探测,具有各种深度灵敏度。本文首先讨论了各种可充电电池以及该领域的相关重要科学问题,然后回顾了基于同步加速器 X 射线的分析工具(散射、光谱和成像)及其在获得这些科学问题的基本见解方面的成功应用(原位、原位和操作中)。此外,电子显微镜和光谱学补充了同步加速器 X 射线工具的检测长度尺度,也在文章末尾进行了讨论。我们强调了通过结合具有互补长度灵敏度的分析技术(例如 X 射线吸收光谱和电子光谱与空间分辨率相结合)来研究电池材料的重要性,因为单一技术可能会导致有偏差和不准确的结论。然后,我们讨论了同步实验的实验设计的当前进展和减轻束流效应的方法。最后,提供了一个观点来阐述同步技术如何影响下一代电池化学的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验