Qian Guannan, Wang Junyang, Li Hong, Ma Zi-Feng, Pianetta Piero, Li Linsen, Yu Xiqian, Liu Yijin
Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Natl Sci Rev. 2021 Aug 17;9(2):nwab146. doi: 10.1093/nsr/nwab146. eCollection 2022 Feb.
Rechargeable battery technologies have revolutionized electronics, transportation and grid energy storage. Many materials are being researched for battery applications, with layered transition metal oxides (LTMO) the dominating cathode candidate with remarkable electrochemical performance. Yet, daunting challenges persist in the quest for further battery developments targeting lower cost, longer lifespan, improved energy density and enhanced safety. This is, in part, because of the intrinsic complexity of real-world batteries, featuring sophisticated interplay among microstructural, compositional and chemical heterogeneities, which has motivated tremendous research efforts using state-of-the-art analytical techniques. In this research field, synchrotron techniques have been identified as a suite of effective methods for advanced battery characterization in a non-destructive manner with sensitivities to the lattice, electronic and morphological structures. This article provides a holistic overview of cutting-edge developments in synchrotron-based research on LTMO battery cathode materials. We discuss the complexity and evolution of LTMO's material properties upon battery operation and review recent synchrotron-based research works that address the frontier challenges and provide novel insights in this field. Finally, we formulate a perspective on future directions of synchrotron-based battery research, involving next-generation X-ray facilities and advanced computational developments.
可充电电池技术已经彻底改变了电子、交通和电网储能领域。目前正在研究许多用于电池应用的材料,层状过渡金属氧化物(LTMO)作为主要的阴极候选材料,具有卓越的电化学性能。然而,在追求更低成本、更长寿命、更高能量密度和更强安全性的电池进一步发展过程中,艰巨的挑战依然存在。部分原因在于实际电池的内在复杂性,其微观结构、成分和化学不均匀性之间存在复杂的相互作用,这促使人们使用先进的分析技术进行大量研究。在这个研究领域,同步加速器技术已被视为一套有效的方法,能够以无损方式对先进电池进行表征,并且对晶格、电子和形态结构具有敏感性。本文全面概述了基于同步加速器对LTMO电池阴极材料研究的前沿进展。我们讨论了LTMO在电池运行时材料特性的复杂性和演变,并回顾了近期基于同步加速器的研究工作,这些工作解决了前沿挑战并为该领域提供了新颖的见解。最后,我们阐述了基于同步加速器的电池研究未来方向的观点,包括下一代X射线设施和先进的计算发展。