Timoshenko Janis, Lu Deyu, Lin Yuewei, Frenkel Anatoly I
Department of Material Science and Chemical Engineering, Stony Brook University , Stony Brook, New York 11794, United States.
Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States.
J Phys Chem Lett. 2017 Oct 19;8(20):5091-5098. doi: 10.1021/acs.jpclett.7b02364. Epub 2017 Oct 4.
Tracking the structure of heterogeneous catalysts under operando conditions remains a challenge due to the paucity of experimental techniques that can provide atomic-level information for catalytic metal species. Here we report on the use of X-ray absorption near-edge structure (XANES) spectroscopy and supervised machine learning (SML) for refining the 3D geometry of metal catalysts. SML is used to unravel the hidden relationship between the XANES features and catalyst geometry. To train our SML method, we rely on ab initio XANES simulations. Our approach allows one to solve the structure of a metal catalyst from its experimental XANES, as demonstrated here by reconstructing the average size, shape, and morphology of well-defined platinum nanoparticles. This method is applicable to the determination of the nanoparticle structure in operando studies and can be generalized to other nanoscale systems. It also allows on-the-fly XANES analysis and is a promising approach for high-throughput and time-dependent studies.
在实际操作条件下追踪多相催化剂的结构仍然是一项挑战,因为能够为催化金属物种提供原子级信息的实验技术匮乏。在此,我们报告了使用X射线吸收近边结构(XANES)光谱和监督机器学习(SML)来优化金属催化剂的三维几何结构。SML用于揭示XANES特征与催化剂几何结构之间的隐藏关系。为了训练我们的SML方法,我们依靠从头算XANES模拟。我们的方法能够根据实验XANES求解金属催化剂的结构,在此通过重建明确的铂纳米颗粒的平均尺寸、形状和形态得到了证明。该方法适用于实际操作研究中纳米颗粒结构的测定,并且可以推广到其他纳米级系统。它还允许实时进行XANES分析,是高通量和时间相关研究的一种有前景的方法。