Suppr超能文献

利用理论增强的机器学习对二维MXenes的结构演变进行实时跟踪。

Real-time tracking of structural evolution in 2D MXenes using theory-enhanced machine learning.

作者信息

Hollenbach Jonathan D, Pate Cassandra M, Jia Haili, Hart James L, Clancy Paulette, Taheri Mitra L

机构信息

Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.

Department of Chemical and Biomolecular and Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Sci Rep. 2024 Aug 2;14(1):17881. doi: 10.1038/s41598-024-66902-4.

Abstract

In situ Electron Energy Loss Spectroscopy (EELS) combined with Transmission Electron Microscopy (TEM) has traditionally been pivotal for understanding how material processing choices affect local structure and composition. However, the ability to monitor and respond to ultrafast transient changes, now achievable with EELS and TEM, necessitates innovative analytical frameworks. Here, we introduce a machine learning (ML) framework tailored for the real-time assessment and characterization of in operando EELS Spectrum Images (EELS-SI). We focus on 2D MXenes as the sample material system, specifically targeting the understanding and control of their atomic-scale structural transformations that critically influence their electronic and optical properties. This approach requires fewer labeled training data points than typical deep learning classification methods. By integrating computationally generated structures of MXenes and experimental datasets into a unified latent space using Variational Autoencoders (VAE) in a unique training method, our framework accurately predicts structural evolutions at latencies pertinent to closed-loop processing within the TEM. This study presents a critical advancement in enabling automated, on-the-fly synthesis and characterization, significantly enhancing capabilities for materials discovery and the precision engineering of functional materials at the atomic scale.

摘要

原位电子能量损失谱(EELS)与透射电子显微镜(TEM)相结合,传统上对于理解材料加工选择如何影响局部结构和成分至关重要。然而,如今利用EELS和TEM能够监测并响应超快瞬态变化,这就需要创新的分析框架。在此,我们引入了一个机器学习(ML)框架,专为实时评估和表征原位EELS光谱图像(EELS-SI)量身定制。我们将二维MXenes作为样本材料体系,特别致力于理解和控制其原子尺度的结构转变,这些转变对其电子和光学性质有着至关重要的影响。与典型的深度学习分类方法相比,这种方法所需的标记训练数据点更少。通过在一种独特的训练方法中使用变分自编码器(VAE)将计算生成的MXenes结构和实验数据集整合到一个统一的潜在空间中,我们的框架能够在与TEM内闭环处理相关的延迟下准确预测结构演变。这项研究在实现自动化、即时合成和表征方面取得了关键进展,显著增强了在原子尺度上发现材料和对功能材料进行精确工程设计的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f76/11297154/29d797e0cf6c/41598_2024_66902_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验