Jeong Eun-Suk, Hwang In-Hui, Han Sang-Wook
Department of Physics Education, Institute of Fusion Science, and Institute of Science Education, Jeonbuk National University, Jeonju, 54896, Korea.
Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Korea.
Sci Rep. 2025 May 20;15(1):17417. doi: 10.1038/s41598-025-94376-5.
Extended X-ray absorption fine structure (EXAFS) serves as a unique tool for accurately characterizing the local structural properties surrounding specific atoms. However, the quantitative analysis of EXAFS data demands significant effort. Artificial intelligence (AI) techniques, including deep reinforcement learning (RL) methods, present a promising avenue for the rapid and precise analysis of EXAFS data sets. Unlike other AI approaches, a deep RL method utilizing reward values does not necessitate a large volume of pre-prepared data sets for training the neural networks of the AI system. We explored the application of a deep RL method for the quantitative analysis of EXAFS data sets, utilizing the reciprocal of the R-factor of a fit as the reward metric. The deep RL method effectively determined the local structural properties of PtO and Zn-O complexes by fitting a series of EXAFS data sets to theoretical EXAFS calculations without imposing specific constraints. Looking ahead, AI has the potential to independently analyze any EXAFS data, although there are still challenges to overcome.
扩展X射线吸收精细结构(EXAFS)是精确表征特定原子周围局部结构性质的独特工具。然而,EXAFS数据的定量分析需要付出巨大努力。包括深度强化学习(RL)方法在内的人工智能(AI)技术,为快速准确地分析EXAFS数据集提供了一条有前景的途径。与其他AI方法不同,利用奖励值的深度RL方法在训练AI系统的神经网络时不需要大量预先准备的数据集。我们探索了一种深度RL方法在EXAFS数据集定量分析中的应用,将拟合的R因子的倒数用作奖励指标。该深度RL方法通过将一系列EXAFS数据集与理论EXAFS计算进行拟合,有效确定了PtO和Zn - O络合物的局部结构性质,且无需施加特定约束。展望未来,尽管仍有挑战需要克服,但人工智能有潜力独立分析任何EXAFS数据。