Suppr超能文献

利用基因敲除小鼠模型研究脑中总肌酸对 CEST Z 谱的贡献。

Investigation of the contribution of total creatine to the CEST Z-spectrum of brain using a knockout mouse model.

机构信息

Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.

Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

NMR Biomed. 2017 Dec;30(12). doi: 10.1002/nbm.3834. Epub 2017 Sep 29.

Abstract

The current study aims to assign and estimate the total creatine (tCr) signal contribution to the Z-spectrum in mouse brain at 11.7 T. Creatine (Cr), phosphocreatine (PCr) and protein phantoms were used to confirm the presence of a guanidinium resonance at this field strength. Wild-type (WT) and knockout mice with guanidinoacetate N-methyltransferase deficiency (GAMT-/-), which have low Cr and PCr concentrations in the brain, were used to assign the tCr contribution to the Z-spectrum. To estimate the total guanidinium concentrations, two pools for the Z-spectrum around 2 ppm were assumed: (i) a Lorentzian function representing the guanidinium chemical exchange saturation transfer (CEST) at 1.95 ppm in the 11.7-T Z-spectrum; and (ii) a background signal that can be fitted by a polynomial function. Comparison between the WT and GAMT-/- mice provided strong evidence for three types of contribution to the peak in the Z-spectrum at 1.95 ppm, namely proteins, Cr and PCr, the latter fitted as tCr. A ratio of 20 ± 7% (protein) and 80 ± 7% tCr was found in brain at 2 μT and 2 s saturation. Based on phantom experiments, the tCr peak was estimated to consist of about 83 ± 5% Cr and 17 ± 5% PCr. Maps for tCr of mouse brain were generated based on the peak at 1.95 ppm after concentration calibration with in vivo magnetic resonance spectroscopy.

摘要

本研究旨在分配并估计 11.7T 下小鼠脑内 Z 谱中总肌酸(tCr)信号的贡献。使用肌酸(Cr)、磷酸肌酸(PCr)和蛋白质仿体来确认在该场强下是否存在胍基共振。野生型(WT)和胍基乙酸 N-甲基转移酶缺乏型(GAMT-/-)的敲除小鼠被用于分配 tCr 对 Z 谱的贡献。为了估计总胍基浓度,假定 Z 谱中围绕 2ppm 的两个池:(i)代表在 11.7-T Z 谱中 1.95ppm 处的胍基化学交换饱和转移(CEST)的洛伦兹函数;(ii)可拟合多项式函数的背景信号。WT 和 GAMT-/- 小鼠之间的比较为 Z 谱中 1.95ppm 处的峰提供了三种类型的贡献的有力证据,即蛋白质、Cr 和 PCr,后者拟合为 tCr。在 2μT 和 2s 饱和时,在脑中发现蛋白质的比例为 20±7%,tCr 为 80±7%。基于仿体实验,tCr 峰被估计由约 83±5% Cr 和 17±5% PCr 组成。基于体内磁共振波谱的浓度校准后,在 1.95ppm 处生成了小鼠脑 tCr 的图谱。

相似文献

3
The exchange rate of creatine CEST in mouse brain.
Magn Reson Med. 2023 Aug;90(2):373-384. doi: 10.1002/mrm.29662. Epub 2023 Apr 10.
4
Creatine mapping of the brain at 3T by CEST MRI.
Magn Reson Med. 2024 Jan;91(1):51-60. doi: 10.1002/mrm.29876. Epub 2023 Oct 9.
6
Simultaneous creatine and phosphocreatine mapping of skeletal muscle by CEST MRI at 3T.
Magn Reson Med. 2024 Mar;91(3):942-954. doi: 10.1002/mrm.29907. Epub 2023 Oct 29.

引用本文的文献

1
Advancing In Vivo Molecular Bioimaging With Optimal Frequency Offset Selection and Deep Learning Reconstruction for CEST MRI.
IEEE Access. 2025;13:89967-89982. doi: 10.1109/access.2025.3571638. Epub 2025 May 19.
2
CEST MRI Affirms HIV-1-Associated Neurometabolic Impairments in a Humanized Mouse Model.
Res Sq. 2025 Jul 2:rs.3.rs-6821484. doi: 10.21203/rs.3.rs-6821484/v1.
4
CEST MRI data analysis using Kolmogorov-Arnold network (KAN) and Lorentzian-KAN (LKAN) models.
Magn Reson Med. 2025 Sep;94(3):1301-1317. doi: 10.1002/mrm.30548. Epub 2025 Jun 4.
5
Asymmetry analysis of nuclear Overhauser enhancement effect at -1.6 ppm in ischemic stroke.
Med Phys. 2025 May;52(5):2922-2937. doi: 10.1002/mp.17677. Epub 2025 Feb 11.
6
The proton resonance enhancement for CEST imaging and shift exchange (PRECISE) family of RF pulse shapes for CEST MRI.
Magn Reson Med. 2025 May;93(5):1954-1968. doi: 10.1002/mrm.30410. Epub 2025 Jan 20.
8
In vivo imaging of glycogen in human muscle.
Nat Commun. 2024 Dec 30;15(1):10826. doi: 10.1038/s41467-024-55132-x.
9
Ungated, plug-and-play preclinical cardiac CEST-MRI using radial FLASH with segmented saturation.
Magn Reson Med. 2025 Apr;93(4):1793-1806. doi: 10.1002/mrm.30382. Epub 2024 Nov 28.

本文引用的文献

1
Assignment of the molecular origins of CEST signals at 2 ppm in rat brain.
Magn Reson Med. 2017 Sep;78(3):881-887. doi: 10.1002/mrm.26802. Epub 2017 Jun 26.
2
Detection and Quantification of Hydrogen Peroxide in Aqueous Solutions Using Chemical Exchange Saturation Transfer.
Anal Chem. 2017 Jul 18;89(14):7758-7764. doi: 10.1021/acs.analchem.7b01763. Epub 2017 Jul 5.
3
Chemical exchange rotation transfer imaging of intermediate-exchanging amines at 2 ppm.
NMR Biomed. 2017 Oct;30(10). doi: 10.1002/nbm.3756. Epub 2017 Jun 7.
6
On-resonance variable delay multipulse scheme for imaging of fast-exchanging protons and semisolid macromolecules.
Magn Reson Med. 2017 Feb;77(2):730-739. doi: 10.1002/mrm.26165. Epub 2016 Feb 22.
7
Downfield-NOE-suppressed amide-CEST-MRI at 7 Tesla provides a unique contrast in human glioblastoma.
Magn Reson Med. 2017 Jan;77(1):196-208. doi: 10.1002/mrm.26100. Epub 2016 Jan 27.
9
Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy.
Sci Transl Med. 2015 Oct 14;7(309):309ra161. doi: 10.1126/scitranslmed.aaa7095.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验