Suppr超能文献

使用柯尔莫哥洛夫-阿诺德网络(KAN)和洛伦兹KAN(LKAN)模型的CEST MRI数据分析。

CEST MRI data analysis using Kolmogorov-Arnold network (KAN) and Lorentzian-KAN (LKAN) models.

作者信息

Wang Jiawen, Cai Pei, Wang Ziyan, Zhang Huabin, Huang Jianpan

机构信息

Laboratory of Advanced Imaging in Medicine (AIM), Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.

出版信息

Magn Reson Med. 2025 Sep;94(3):1301-1317. doi: 10.1002/mrm.30548. Epub 2025 Jun 4.

Abstract

PURPOSE

To investigate the potential of using Kolmogorov-Arnold Network (KAN) and propose Lorentzian-KAN (LKAN) for CEST MRI data analysis (CEST-KAN/CEST-LKAN).

METHODS

CEST MRI data acquired from 27 healthy volunteers at 3 T were used in this study. Data from 25 subjects were used for training and validation (548 865 Z-spectra), whereas the remaining two were reserved for testing (51 977 Z-spectra). The performance of multi-layer perceptron (MLP), KAN, and LKAN models was evaluated and compared to conventional multi-pool Lorentzian fitting (MPLF) method in generating ΔB, water, and multiple CEST contrasts, including amide, relayed nuclear Overhauser effect (rNOE), and magnetization transfer (MT).

RESULTS

The KAN and LKAN showed higher accuracy in predicting CEST parameters compared to MLP, with average reductions in test loss of 28.37% and 32.17%, respectively. Voxel-wise correlation analysis also revealed that ΔB and four other CEST parameters from the KAN and LKAN had higher average Pearson coefficients than MLP by 1.57% and 2.84%, indicating superior performance. LKAN exhibited a shorter average training time by 37.26% and a smaller average test loss by 5.29% compared to the KAN. Furthermore, our results demonstrated that even smaller KAN and LKAN could achieve better accuracy than MLPs, with both KAN and LKAN showing greater robustness to noisy data compared to MLP.

CONCLUSION

This study demonstrates the feasibility of KAN and LKAN for CEST MRI data analysis, highlighting their superiority over MLP. The findings suggest that CEST-KAN and CEST-LKAN have the potential to be robust and reliable post-analysis tools for CEST MRI in clinical settings.

摘要

目的

研究使用柯尔莫哥洛夫 - 阿诺德网络(KAN)的潜力,并提出用于化学交换饱和转移磁共振成像(CEST MRI)数据分析的洛伦兹 - KAN(LKAN)(CEST - KAN/CEST - LKAN)。

方法

本研究使用了从27名健康志愿者在3T场强下采集的CEST MRI数据。来自25名受试者的数据用于训练和验证(548865个Z谱),而其余两名受试者的数据留作测试(51977个Z谱)。评估了多层感知器(MLP)、KAN和LKAN模型在生成ΔB、水以及多种CEST对比(包括酰胺、中继核Overhauser效应(rNOE)和磁化传递(MT))方面的性能,并与传统的多池洛伦兹拟合(MPLF)方法进行比较。

结果

与MLP相比,KAN和LKAN在预测CEST参数方面表现出更高的准确性,测试损失平均分别降低了28.37%和32.17%。体素级相关性分析还显示,KAN和LKAN的ΔB以及其他四个CEST参数的平均皮尔逊系数比MLP分别高1.57%和2.84%,表明性能更优。与KAN相比,LKAN的平均训练时间缩短了37.26%,平均测试损失降低了5.29%。此外,我们的结果表明,即使是更小的KAN和LKAN也能比MLP实现更高的准确性,并且与MLP相比,KAN和LKAN对噪声数据都表现出更强的鲁棒性。

结论

本研究证明了KAN和LKAN用于CEST MRI数据分析的可行性,突出了它们相对于MLP的优越性。研究结果表明,CEST - KAN和CEST - LKAN有可能成为临床环境中CEST MRI强大且可靠的后分析工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1c6/12202730/873b05fb62b0/MRM-94-1301-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验