Ukuwela Ashwinie A, Bush Ashley I, Wedd Anthony G, Xiao Zhiguang
School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia.
Biochem J. 2017 Nov 9;474(22):3799-3815. doi: 10.1042/BCJ20170589.
Glutaredoxins (Grxs) are a class of GSH (glutathione)-dependent thiol-disulfide oxidoreductase enzymes. They use the cellular redox buffer GSSG (glutathione disulfide)/GSH directly to catalyze these exchange reactions. Grxs feature dithiol active sites and can shuttle rapidly between three oxidation states, namely dithiol Grx(SH), mixed disulfide Grx(SH)(SSG) and oxidized disulfide Grx(SS). Each is characterized by a distinct standard reduction potential [Formula: see text] The [Formula: see text] values for the redox couple Grx(SS)/Grx(SH) are available, but a recent estimate differs by over 100 mV from the literature values. No estimates are available for [Formula: see text] for the mixed disulfide couple Grx(SH)(SSG)/(Grx(SH) + GSH). This work determined both [Formula: see text] and [Formula: see text] for two representative Grx enzymes, HsGrx1 and EcGrx1. The empirical approaches were verified rigorously to overcome the sensitivity of these redox-labile enzymes to experimental conditions. The classic method of acid 'quenching' was demonstrated to shift the thiol-disulfide redox equilibria. Both enzymes exhibit an [Formula: see text] (vs. SHE) at a pH of 7.0. Their [Formula: see text] values (-213 and -230 mV for EcGrx1 and HsGrx1, respectively) are slightly less negative than that ([Formula: see text]) of the redox buffer GSSG/2GSH. Both [Formula: see text] and [Formula: see text] vary with log [GSH], but the former more sensitively by a factor of 2. This confers dual catalytic functions to a Grx enzyme as either an oxidase at low [GSH] or as a reductase at high [GSH]. Consequently, these enzymes can participate efficiently in either glutathionylation or deglutathionylation. The catalysis is demonstrated to proceed via a monothiol ping-pong mechanism relying on a single Cys residue only in the dithiol active site.
谷氧还蛋白(Grxs)是一类依赖谷胱甘肽(GSH)的硫醇 - 二硫键氧化还原酶。它们直接利用细胞氧化还原缓冲剂谷胱甘肽二硫化物(GSSG)/GSH来催化这些交换反应。谷氧还蛋白具有二硫醇活性位点,能够在三种氧化态之间快速穿梭,即二硫醇型Grx(SH)、混合二硫型Grx(SH)(SSG)和氧化二硫型Grx(SS)。每种氧化态都具有独特的标准还原电位[公式:见原文]。氧化还原对Grx(SS)/Grx(SH)的[公式:见原文]值是已知的,但最近的一个估计值与文献值相差超过100 mV。对于混合二硫对Grx(SH)(SSG)/(Grx(SH) + GSH)的[公式:见原文]尚无估计值。这项工作确定了两种代表性谷氧还蛋白酶HsGrx1和EcGrx1的[公式:见原文]和[公式:见原文]。为克服这些对氧化还原敏感的酶对实验条件的敏感性,对经验方法进行了严格验证。结果表明,经典的酸“淬灭”方法会改变硫醇 - 二硫键的氧化还原平衡。两种酶在pH为7.0时的[公式:见原文](相对于标准氢电极)。它们的[公式:见原文]值(EcGrx1和HsGrx1分别为 - 213和 - 230 mV)比氧化还原缓冲剂GSSG/2GSH的[公式:见原文]值([公式:见原文])略负。[公式:见原文]和[公式:见原文]都随log[GSH]而变化,但前者变化更敏感,变化因子为2。这赋予了谷氧还蛋白酶双重催化功能,在低[GSH]时作为氧化酶,在高[GSH]时作为还原酶。因此,这些酶能够有效地参与谷胱甘肽化或去谷胱甘肽化反应。已证明催化过程通过单硫醇乒乓机制进行,该机制仅依赖于二硫醇活性位点中的单个半胱氨酸残基。