Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany; Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113, Bonn, Germany.
Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy.
Redox Biol. 2024 Feb;69:103015. doi: 10.1016/j.redox.2023.103015. Epub 2023 Dec 28.
Redox status of protein cysteinyl residues is mediated via glutathione (GSH)/glutaredoxin (GRX) and thioredoxin (TRX)-dependent redox cascades. An oxidative challenge can induce post-translational protein modifications on thiols, such as protein S-glutathionylation. Class I GRX are small thiol-disulfide oxidoreductases that reversibly catalyse S-glutathionylation and protein disulfide formation. TRX and GSH/GRX redox systems can provide partial backup for each other in several subcellular compartments, but not in the plastid stroma where TRX/light-dependent redox regulation of primary metabolism takes place. While the stromal TRX system has been studied at detail, the role of class I GRX on plastid redox processes is still unknown. We generate knockout lines of GRXC5 as the only chloroplast class I GRX of the moss Physcomitrium patens. While we find that PpGRXC5 has high activities in GSH-dependent oxidoreductase assays using hydroxyethyl disulfide or redox-sensitive GFP2 as substrates in vitro, Δgrxc5 plants show no detectable growth defect or stress sensitivity, in contrast to mutants with a less negative stromal E (Δgr1). Using stroma-targeted roGFP2, we show increased protein Cys steady state oxidation and decreased reduction rates after oxidative challenge in Δgrxc5 plants in vivo, indicating kinetic uncoupling of the protein Cys redox state from E. Compared to wildtype, protein Cys disulfide formation rates and S-glutathionylation levels after HO treatment remained unchanged. Lack of class I GRX function in the stroma did not result in impaired carbon fixation. Our observations suggest specific roles for GRXC5 in the efficient transfer of electrons from GSH to target protein Cys as well as negligible cross-talk with metabolic regulation via the TRX system. We propose a model for stromal class I GRX function in efficient catalysis of protein dithiol/disulfide equilibria upon redox steady state alterations affecting stromal E and highlight the importance of identifying in vivo target proteins of GRXC5.
蛋白质半胱氨酸残基的氧化还原状态通过谷胱甘肽 (GSH)/谷胱甘肽还原酶 (GRX) 和硫氧还蛋白 (TRX) 依赖性氧化还原级联来调节。氧化应激可以诱导巯基的翻译后蛋白质修饰,例如蛋白质 S-谷胱甘肽化。I 类 GRX 是小的巯基-二硫键氧化还原酶,可可逆地催化 S-谷胱甘肽化和蛋白质二硫键形成。TRX 和 GSH/GRX 氧化还原系统可以在几个亚细胞区室中相互提供部分备份,但不能在质体基质中提供备份,因为质体基质中的 TRX/光依赖性代谢的氧化还原调节在此发生。虽然已经详细研究了基质 TRX 系统,但 I 类 GRX 在质体氧化还原过程中的作用仍然未知。我们生成了 GRXC5 的敲除系作为藓类 Physcomitrium patens 中唯一的质体 I 类 GRX。虽然我们发现 PpGRXC5 在体外使用羟乙基二硫代或氧化还原敏感 GFP2 作为底物的 GSH 依赖性氧化还原酶测定中具有高活性,但与 E 值更负的突变体(Δgr1)相比,Δgrxc5 植物没有检测到明显的生长缺陷或应激敏感性。使用质体靶向的 roGFP2,我们在体内显示出在氧化应激后Δgrxc5 植物中蛋白质半胱氨酸稳态氧化增加和还原速率降低,表明蛋白质半胱氨酸氧化还原状态与 E 的动力学解耦。与野生型相比,HO 处理后蛋白质二硫键形成速率和 S-谷胱甘肽化水平保持不变。质体中缺乏 I 类 GRX 功能不会导致碳固定受损。我们的观察结果表明,GRXC5 在将电子从 GSH 有效转移到靶蛋白半胱氨酸以及与通过 TRX 系统进行代谢调节的微不足道的交叉对话方面具有特定作用。我们提出了一个模型,用于解释在影响基质 E 的氧化还原稳态变化时,基质 I 类 GRX 如何有效地催化蛋白质二硫键/巯基平衡,突出了鉴定 GRXC5 的体内靶蛋白的重要性。