Suppr超能文献

揭示靶向 I 通道药物的动力学和状态依赖性结合特性,以最大限度地提高心房颤动选择性。

Revealing kinetics and state-dependent binding properties of I-targeting drugs that maximize atrial fibrillation selectivity.

作者信息

Ellinwood Nicholas, Dobrev Dobromir, Morotti Stefano, Grandi Eleonora

机构信息

Department of Pharmacology, University of California Davis, Davis, California 95616, USA.

Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.

出版信息

Chaos. 2017 Sep;27(9):093918. doi: 10.1063/1.5000226.

Abstract

The K1.5 potassium channel, which underlies the ultra-rapid delayed-rectifier current (I) and is predominantly expressed in atria vs. ventricles, has emerged as a promising target to treat atrial fibrillation (AF). However, while numerous K1.5-selective compounds have been screened, characterized, and tested in various animal models of AF, evidence of antiarrhythmic efficacy in humans is still lacking. Moreover, current guidelines for pre-clinical assessment of candidate drugs heavily rely on steady-state concentration-response curves or IC values, which can overlook adverse cardiotoxic effects. We sought to investigate the effects of kinetics and state-dependent binding of I-targeting drugs on atrial electrophysiology in silico and reveal the ideal properties of I blockers that maximize anti-AF efficacy and minimize pro-arrhythmic risk. To this aim, we developed a new Markov model of I that describes K1.5 gating based on experimental voltage-clamp data in atrial myocytes from patient right-atrial samples in normal sinus rhythm. We extended the I formulation to account for state-specificity and kinetics of K1.5-drug interactions and incorporated it into our human atrial cell model. We simulated 1- and 3-Hz pacing protocols in drug-free conditions and with a [drug] equal to the IC value. The effects of binding and unbinding kinetics were determined by examining permutations of the forward (k) and reverse (k) binding rates to the closed, open, and inactivated states of the K1.5 channel. We identified a subset of ideal drugs exhibiting anti-AF electrophysiological parameter changes at fast pacing rates (effective refractory period prolongation), while having little effect on normal sinus rhythm (limited action potential prolongation). Our results highlight that accurately accounting for channel interactions with drugs, including kinetics and state-dependent binding, is critical for developing safer and more effective pharmacological anti-AF options.

摘要

K1.5钾通道是超快速延迟整流电流(I)的基础,主要在心房而非心室中表达,已成为治疗心房颤动(AF)的一个有前景的靶点。然而,尽管已经筛选、表征并在各种AF动物模型中测试了许多K1.5选择性化合物,但仍缺乏在人体中的抗心律失常疗效证据。此外,目前候选药物临床前评估指南严重依赖稳态浓度-反应曲线或IC值,这可能会忽略不良心脏毒性作用。我们试图在计算机模拟中研究靶向I的药物的动力学和状态依赖性结合对心房电生理的影响,并揭示能使抗AF疗效最大化和促心律失常风险最小化的I阻滞剂的理想特性。为此,我们基于正常窦性心律患者右心房样本中心房肌细胞的实验电压钳数据,开发了一种新的I马尔可夫模型,该模型描述了K1.5门控。我们扩展了I的公式,以考虑K1.5与药物相互作用的状态特异性和动力学,并将其纳入我们的人体心房细胞模型。我们在无药物条件下以及药物浓度等于IC值的情况下模拟了1赫兹和3赫兹起搏方案。通过检查K1.5通道关闭、开放和失活状态的正向(k)和反向(k)结合速率的排列来确定结合和解离动力学的影响。我们确定了一组理想药物,它们在快速起搏速率下表现出抗AF电生理参数变化(有效不应期延长),而对正常窦性心律影响很小(动作电位延长有限)。我们的结果强调,准确考虑通道与药物的相互作用,包括动力学和状态依赖性结合,对于开发更安全、更有效的抗AF药物选择至关重要。

相似文献

3
Rate-Dependent Role of I in Human Atrial Repolarization and Atrial Fibrillation Maintenance.
Biophys J. 2017 May 9;112(9):1997-2010. doi: 10.1016/j.bpj.2017.03.022.
4
Human electrophysiological and pharmacological properties of XEN-D0101: a novel atrial-selective Kv1.5/IKur inhibitor.
J Cardiovasc Pharmacol. 2013 May;61(5):408-15. doi: 10.1097/FJC.0b013e31828780eb.
5
In silico study on the effects of IKur block kinetics on prolongation of human action potential after atrial fibrillation-induced electrical remodeling.
Am J Physiol Heart Circ Physiol. 2008 Feb;294(2):H793-800. doi: 10.1152/ajpheart.01229.2007. Epub 2007 Nov 30.
9
Potassium Channel Blockade Enhances Atrial Fibrillation-Selective Antiarrhythmic Effects of Optimized State-Dependent Sodium Channel Blockade.
Circulation. 2015 Dec 8;132(23):2203-11. doi: 10.1161/CIRCULATIONAHA.115.018016. Epub 2015 Oct 23.

引用本文的文献

1
Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation.
Physiol Rev. 2024 Jul 1;104(3):1265-1333. doi: 10.1152/physrev.00017.2023. Epub 2023 Dec 28.
2
Dual effects of the small-conductance Ca-activated K current on human atrial electrophysiology and Ca-driven arrhythmogenesis: an in silico study.
Am J Physiol Heart Circ Physiol. 2023 Oct 1;325(4):H896-H908. doi: 10.1152/ajpheart.00362.2023. Epub 2023 Aug 25.
4
When Does the IC Accurately Assess the Blocking Potency of a Drug?
J Chem Inf Model. 2020 Mar 23;60(3):1779-1790. doi: 10.1021/acs.jcim.9b01085. Epub 2020 Mar 10.
5
Understanding AF Mechanisms Through Computational Modelling and Simulations.
Arrhythm Electrophysiol Rev. 2019 Jul;8(3):210-219. doi: 10.15420/aer.2019.28.2.
8
Computational modeling: What does it tell us about atrial fibrillation therapy?
Int J Cardiol. 2019 Jul 15;287:155-161. doi: 10.1016/j.ijcard.2019.01.077. Epub 2019 Jan 25.
9
Transient outward K current can strongly modulate action potential duration and initiate alternans in the human atrium.
Am J Physiol Heart Circ Physiol. 2019 Mar 1;316(3):H527-H542. doi: 10.1152/ajpheart.00251.2018. Epub 2018 Dec 21.
10

本文引用的文献

1
Rate-Dependent Role of I in Human Atrial Repolarization and Atrial Fibrillation Maintenance.
Biophys J. 2017 May 9;112(9):1997-2010. doi: 10.1016/j.bpj.2017.03.022.
3
Logistic regression analysis of populations of electrophysiological models to assess proarrythmic risk.
MethodsX. 2016 Dec 23;4:25-34. doi: 10.1016/j.mex.2016.12.002. eCollection 2017.
4
Anti-arrhythmic strategies for atrial fibrillation: The role of computational modeling in discovery, development, and optimization.
Pharmacol Ther. 2016 Dec;168:126-142. doi: 10.1016/j.pharmthera.2016.09.012. Epub 2016 Sep 6.
5
Improved Prediction of Drug-Induced Torsades de Pointes Through Simulations of Dynamics and Machine Learning Algorithms.
Clin Pharmacol Ther. 2016 Oct;100(4):371-9. doi: 10.1002/cpt.367. Epub 2016 May 20.
7
In silico assessment of kinetics and state dependent binding properties of drugs causing acquired LQTS.
Prog Biophys Mol Biol. 2016 Jan;120(1-3):89-99. doi: 10.1016/j.pbiomolbio.2015.12.005. Epub 2015 Dec 20.
8
Potassium Channel Blockade Enhances Atrial Fibrillation-Selective Antiarrhythmic Effects of Optimized State-Dependent Sodium Channel Blockade.
Circulation. 2015 Dec 8;132(23):2203-11. doi: 10.1161/CIRCULATIONAHA.115.018016. Epub 2015 Oct 23.
10
Atrial-selective targeting of arrhythmogenic phase-3 early afterdepolarizations in human myocytes.
J Mol Cell Cardiol. 2016 Jul;96:63-71. doi: 10.1016/j.yjmcc.2015.07.030. Epub 2015 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验