Suppr超能文献

心房颤动的电生理学与药物治疗的计算建模:最新进展与未来挑战

Computational Modeling of Electrophysiology and Pharmacotherapy of Atrial Fibrillation: Recent Advances and Future Challenges.

作者信息

Vagos Márcia, van Herck Ilsbeth G M, Sundnes Joakim, Arevalo Hermenegild J, Edwards Andrew G, Koivumäki Jussi T

机构信息

Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway.

Department of Informatics, University of Oslo, Oslo, Norway.

出版信息

Front Physiol. 2018 Sep 4;9:1221. doi: 10.3389/fphys.2018.01221. eCollection 2018.

Abstract

The pathophysiology of atrial fibrillation (AF) is broad, with components related to the unique and diverse cellular electrophysiology of atrial myocytes, structural complexity, and heterogeneity of atrial tissue, and pronounced disease-associated remodeling of both cells and tissue. A major challenge for rational design of AF therapy, particularly pharmacotherapy, is integrating these multiscale characteristics to identify approaches that are both efficacious and independent of ventricular contraindications. Computational modeling has long been touted as a basis for achieving such integration in a rapid, economical, and scalable manner. However, computational pipelines for AF-specific drug screening are in their infancy, and while the field is progressing quite rapidly, major challenges remain before computational approaches can fill the role of workhorse in rational design of AF pharmacotherapies. In this review, we briefly detail the unique aspects of AF pathophysiology that determine requirements for compounds targeting AF rhythm control, with emphasis on delimiting mechanisms that promote AF triggers from those providing substrate or supporting reentry. We then describe modeling approaches that have been used to assess the outcomes of drugs acting on established AF targets, as well as on novel promising targets including the ultra-rapidly activating delayed rectifier potassium current, the acetylcholine-activated potassium current and the small conductance calcium-activated potassium channel. Finally, we describe how heterogeneity and variability are being incorporated into AF-specific models, and how these approaches are yielding novel insights into the basic physiology of disease, as well as aiding identification of the important molecular players in the complex AF etiology.

摘要

心房颤动(AF)的病理生理学涉及面广,包括与心房肌细胞独特且多样的细胞电生理学、心房组织的结构复杂性和异质性以及细胞和组织明显的疾病相关重塑有关的成分。合理设计房颤治疗方法,尤其是药物治疗面临的一个主要挑战是整合这些多尺度特征,以确定既有效又不受心室禁忌证限制的方法。长期以来,计算建模一直被视为以快速、经济和可扩展的方式实现这种整合的基础。然而,用于房颤特异性药物筛选的计算流程尚处于起步阶段,尽管该领域发展迅速,但在计算方法能够在房颤药物治疗的合理设计中发挥主力作用之前,仍存在重大挑战。在这篇综述中,我们简要详细介绍了房颤病理生理学的独特方面,这些方面决定了针对房颤节律控制的化合物的要求,重点是区分促进房颤触发的机制与提供底物或支持折返的机制。然后,我们描述了用于评估作用于既定房颤靶点以及包括超快速激活延迟整流钾电流通道、乙酰胆碱激活钾电流通道和小电导钙激活钾通道等新的有前景靶点的药物疗效的建模方法。最后,我们描述了如何将异质性和变异性纳入房颤特异性模型,以及这些方法如何对疾病的基本生理学产生新的见解,以及如何帮助识别复杂房颤病因中的重要分子参与者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef17/6131668/608025027c3e/fphys-09-01221-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验