Saager Rolf B, Dang An N, Huang Samantha S, Kelly Kristen M, Durkin Anthony J
Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612, USA.
Rev Sci Instrum. 2017 Sep;88(9):094302. doi: 10.1063/1.5001075.
Spatial Frequency Domain Spectroscopy (SFDS) is a technique for quantifying in-vivo tissue optical properties. SFDS employs structured light patterns that are projected onto tissues using a spatial light modulator, such as a digital micromirror device. In combination with appropriate models of light propagation, this technique can be used to quantify tissue optical properties (absorption, μ, and scattering, μ', coefficients) and chromophore concentrations. Here we present a handheld implementation of an SFDS device that employs line (one dimensional) imaging. This instrument can measure 1088 spatial locations that span a 3 cm line as opposed to our original benchtop SFDS system that only collects a single 1 mm diameter spot. This imager, however, retains the spectral resolution (∼1 nm) and range (450-1000 nm) of our original benchtop SFDS device. In the context of homogeneous turbid media, we demonstrate that this new system matches the spectral response of our original system to within 1% across a typical range of spatial frequencies (0-0.35 mm). With the new form factor, the device has tremendously improved mobility and portability, allowing for greater ease of use in a clinical setting. A smaller size also enables access to different tissue locations, which increases the flexibility of the device. The design of this portable system not only enables SFDS to be used in clinical settings but also enables visualization of properties of layered tissues such as skin.
空间频域光谱学(SFDS)是一种用于量化活体组织光学特性的技术。SFDS采用结构化光图案,这些图案通过空间光调制器(如数字微镜器件)投射到组织上。结合适当的光传播模型,该技术可用于量化组织光学特性(吸收系数μ和散射系数μ')以及发色团浓度。在此,我们展示了一种采用线(一维)成像的手持式SFDS设备。该仪器能够测量跨越3厘米线的1088个空间位置,而我们原来的台式SFDS系统仅采集单个直径为1毫米的光斑。然而,该成像仪保留了我们原来台式SFDS设备的光谱分辨率(约1纳米)和范围(450 - 1000纳米)。在均匀浑浊介质的情况下,我们证明这个新系统在典型的空间频率范围(0 - 0.35毫米)内,其光谱响应与我们原来的系统匹配度在1%以内。凭借新的外形尺寸,该设备的移动性和便携性得到了极大提升,在临床环境中使用更加便捷。更小的尺寸还能够接触到不同的组织位置,从而增加了设备的灵活性。这种便携式系统的设计不仅使SFDS能够用于临床环境,还能实现对分层组织(如皮肤)特性的可视化。