University of California, Beckman Laser Institute and Medical Clinic, Department of Surgery, Irvine, CaliforniabUniversity of California, Department of Biomedical Engineering, Irvine, California.
J Biomed Opt. 2013 Sep;18(9):096007. doi: 10.1117/1.JBO.18.9.096007.
There is a need for cost effective, quantitative tissue spectroscopy and imaging systems in clinical diagnostics and pre-clinical biomedical research. A platform that utilizes a commercially available light-emitting diode (LED) based projector, cameras, and scaled Monte Carlo model for calculating tissue optical properties is presented. These components are put together to perform spatial frequency domain imaging (SFDI), a model-based reflectance technique that measures and maps absorption coefficients (μa) and reduced scattering coefficients (μs') in thick tissue such as skin or brain. We validate the performance of the flexible LED and modulation element (FLaME) system at 460, 530, and 632 nm across a range of physiologically relevant μa values (0.07 to 1.5 mm-1) in tissue-simulating intralipid phantoms, showing an overall accuracy within 11% of spectrophotometer values for μa and 3% for μs'. Comparison of oxy- and total hemoglobin fits between the FLaME system and a spectrophotometer (450 to 1000 nm) is differed by 3%. Finally, we acquire optical property maps of a mouse brain in vivo with and without an overlying saline well. These results demonstrate the potential of FLaME to perform tissue optical property mapping in visible spectral regions and highlight how the optical clearing effect of saline is correlated to a decrease in μs' of the skull.
在临床诊断和临床前生物医学研究中,需要具有成本效益的定量组织光谱和成像系统。本文提出了一种利用商用发光二极管(LED)投影仪、相机和缩放蒙特卡罗模型来计算组织光学特性的平台。这些组件被组合在一起以执行空间频域成像(SFDI),这是一种基于模型的反射技术,可测量和绘制皮肤或大脑等厚组织中的吸收系数(μa)和散射系数(μs')。我们验证了灵活的 LED 和调制元件(FLaME)系统在 460、530 和 632nm 波长下在组织模拟脂肪内体中测量一系列生理相关的 μa 值(0.07 至 1.5mm-1)的性能,结果表明其对 μa 的总体准确性在分光光度计值的 11%以内,对 μs'的准确性在 3%以内。FLaME 系统与分光光度计(450 至 1000nm)之间的氧合血红蛋白和总血红蛋白拟合的比较差异为 3%。最后,我们在有和没有生理盐水覆盖的情况下对活体小鼠大脑进行了光学特性映射。这些结果表明了 FLaME 在可见光谱区域进行组织光学特性映射的潜力,并强调了生理盐水的光学透明效应如何与颅骨 μs'的降低相关。