Sengupta Durba, Sonar Krushna, Joshi Manali
CSIR-National Chemical Laboratory, Pune, India.
CSIR-National Chemical Laboratory, Pune, India.
Methods Cell Biol. 2017;142:187-204. doi: 10.1016/bs.mcb.2017.07.013. Epub 2017 Sep 12.
G protein-coupled receptors (GPCRs) are an important class of drug targets owing to their physiological role. A large number of clinically relevant single nucleotide polymorphisms (SNPs) have been observed in GPCRs that are linked to disease susceptibility and adverse drug response. It is therefore important to characterize the variants in order to improve GPCR therapeutics. Here, we discuss computational methods coupling molecular dynamics simulations with docking and free energy calculations to characterize the functional differences in GPCR variants. The hallmark of this approach is the explicit incorporation of receptor and membrane dynamics that allows us to analyze short- and long-range effects in the variant receptors. We use the SNPs reported in β-adrenergic receptor (βAR) as a test case and highlight the recent successes in analyzing structural and dynamic differences in a series of population variants. The computational approach we discuss here has a twofold benefit: it helps to unravel the molecular mechanisms underlying hypo- or hyperfunctionality of variant receptors as well as prioritizing novel variants that must be experimentally tested.
G蛋白偶联受体(GPCRs)因其生理作用而成为一类重要的药物靶点。在GPCRs中已观察到大量与疾病易感性和药物不良反应相关的临床相关单核苷酸多态性(SNPs)。因此,表征这些变体对于改进GPCR治疗方法很重要。在这里,我们讨论将分子动力学模拟与对接和自由能计算相结合的计算方法,以表征GPCR变体中的功能差异。这种方法的标志是明确纳入受体和膜动力学,这使我们能够分析变体受体中的短程和长程效应。我们将β-肾上腺素能受体(βAR)中报道的SNPs用作测试案例,并强调了在分析一系列群体变体的结构和动态差异方面最近取得的成功。我们在此讨论的计算方法有双重好处:它有助于揭示变体受体功能低下或亢进的分子机制,以及对必须进行实验测试的新变体进行优先级排序。