Suppr超能文献

使用计算方法表征G蛋白偶联受体(GPCRs)的临床相关天然变体。

Characterizing clinically relevant natural variants of GPCRs using computational approaches.

作者信息

Sengupta Durba, Sonar Krushna, Joshi Manali

机构信息

CSIR-National Chemical Laboratory, Pune, India.

CSIR-National Chemical Laboratory, Pune, India.

出版信息

Methods Cell Biol. 2017;142:187-204. doi: 10.1016/bs.mcb.2017.07.013. Epub 2017 Sep 12.

Abstract

G protein-coupled receptors (GPCRs) are an important class of drug targets owing to their physiological role. A large number of clinically relevant single nucleotide polymorphisms (SNPs) have been observed in GPCRs that are linked to disease susceptibility and adverse drug response. It is therefore important to characterize the variants in order to improve GPCR therapeutics. Here, we discuss computational methods coupling molecular dynamics simulations with docking and free energy calculations to characterize the functional differences in GPCR variants. The hallmark of this approach is the explicit incorporation of receptor and membrane dynamics that allows us to analyze short- and long-range effects in the variant receptors. We use the SNPs reported in β-adrenergic receptor (βAR) as a test case and highlight the recent successes in analyzing structural and dynamic differences in a series of population variants. The computational approach we discuss here has a twofold benefit: it helps to unravel the molecular mechanisms underlying hypo- or hyperfunctionality of variant receptors as well as prioritizing novel variants that must be experimentally tested.

摘要

G蛋白偶联受体(GPCRs)因其生理作用而成为一类重要的药物靶点。在GPCRs中已观察到大量与疾病易感性和药物不良反应相关的临床相关单核苷酸多态性(SNPs)。因此,表征这些变体对于改进GPCR治疗方法很重要。在这里,我们讨论将分子动力学模拟与对接和自由能计算相结合的计算方法,以表征GPCR变体中的功能差异。这种方法的标志是明确纳入受体和膜动力学,这使我们能够分析变体受体中的短程和长程效应。我们将β-肾上腺素能受体(βAR)中报道的SNPs用作测试案例,并强调了在分析一系列群体变体的结构和动态差异方面最近取得的成功。我们在此讨论的计算方法有双重好处:它有助于揭示变体受体功能低下或亢进的分子机制,以及对必须进行实验测试的新变体进行优先级排序。

相似文献

1
Characterizing clinically relevant natural variants of GPCRs using computational approaches.
Methods Cell Biol. 2017;142:187-204. doi: 10.1016/bs.mcb.2017.07.013. Epub 2017 Sep 12.
3
Molecular determinants of GPCR pharmacogenetics: Deconstructing the population variants in β-adrenergic receptor.
Adv Protein Chem Struct Biol. 2022;128:361-396. doi: 10.1016/bs.apcsb.2021.08.002. Epub 2021 Oct 13.
4
Molecular insights into the dynamics of pharmacogenetically important N-terminal variants of the human β2-adrenergic receptor.
PLoS Comput Biol. 2014 Dec 11;10(12):e1004006. doi: 10.1371/journal.pcbi.1004006. eCollection 2014 Dec.
5
Potential Application of Alchemical Free Energy Simulations to Discriminate GPCR Ligand Efficacy.
J Chem Theory Comput. 2015 Mar 10;11(3):1255-66. doi: 10.1021/ct5008907.
6
Structural and Functional Analysis of a β-Adrenergic Receptor Complex with GRK5.
Cell. 2017 Apr 20;169(3):407-421.e16. doi: 10.1016/j.cell.2017.03.047.
8
What can simulations tell us about GPCRs: Integrating the scales.
Methods Cell Biol. 2016;132:429-52. doi: 10.1016/bs.mcb.2015.11.007. Epub 2015 Dec 24.
9
Insights into the role of Asp79(2.50) in β2 adrenergic receptor activation from molecular dynamics simulations.
Biochemistry. 2014 Nov 25;53(46):7283-96. doi: 10.1021/bi5008723. Epub 2014 Nov 12.
10
Differential Dynamics Underlying the Gln27Glu Population Variant of the β-Adrenergic Receptor.
J Membr Biol. 2019 Oct;252(4-5):499-507. doi: 10.1007/s00232-019-00093-2. Epub 2019 Sep 13.

引用本文的文献

1
The role of ADRB2 gene polymorphisms in malignancies.
Mol Biol Rep. 2021 Mar;48(3):2741-2749. doi: 10.1007/s11033-021-06250-y. Epub 2021 Mar 6.
2
How Do Molecular Dynamics Data Complement Static Structural Data of GPCRs.
Int J Mol Sci. 2020 Aug 18;21(16):5933. doi: 10.3390/ijms21165933.
3
Differential Dynamics Underlying the Gln27Glu Population Variant of the β-Adrenergic Receptor.
J Membr Biol. 2019 Oct;252(4-5):499-507. doi: 10.1007/s00232-019-00093-2. Epub 2019 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验