Suppr超能文献

采用平头压痕和逆有限元法对半月板组织进行力学建模和特性描述。

Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method.

机构信息

Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.

Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.

出版信息

J Mech Behav Biomed Mater. 2018 Jan;77:337-346. doi: 10.1016/j.jmbbm.2017.09.023. Epub 2017 Sep 23.

Abstract

In this paper, to characterize the mechanical properties of meniscus by considering its local microstructure, a novel nonlinear poroviscoelastic Finite Element (FE) model has been developed. To obtain the mechanical response of meniscus, indentation experiments were performed on bovine meniscus samples. The ramp-relaxation test scenario with different depths and preloads was designed to capture the mechanical characteristics of the tissue in different regions of the medial and lateral menisci. Thereafter, a FE simulation was performed considering experimental conditions. Constitutive parameters were optimized by solving a FE-based inverse problem using the heuristic Simulated Annealing (SA) optimization algorithm. These parameters were ranged according to previously reported data to improve the optimization procedure. Based on the results, the mechanical properties of meniscus were highly influenced by both superficial and main layers. At low indentation depths, a high percentage relaxation (p < 0.01) with a high relaxation rate (p < 0.05) was obtained, due to the poroelastic and viscoelastic nature of the superficial layer. Increasing both penetration depth and preload level involved the main layer response and caused alterations in hyperelastic and viscoelastic parameters of the tissue, such that for both layers, the shear modulus was increased (p < 0.01) while the rate and percentage of relaxation were decreased (p < 0.01). Results reflect that, shear modulus of the main layer in anterior region is higher than central and posterior sites in medial meniscus. In contrast, in lateral meniscus, posterior side is stiffer than central and anterior sides.

摘要

本文通过考虑半月板的局部微观结构,开发了一种新的非线性多孔黏弹性有限元(FE)模型来描述半月板的力学性能。为了获得半月板的力学响应,对牛半月板样本进行了压痕实验。设计了不同深度和预载的斜坡松弛试验方案,以捕获内侧和外侧半月板不同区域组织的力学特性。然后,根据实验条件进行了 FE 模拟。使用启发式模拟退火(SA)优化算法求解基于 FE 的反问题来优化本构参数。根据之前的报告数据来确定这些参数的范围,以提高优化过程的效率。基于这些结果,半月板的力学性能受到浅表层和主要层的共同影响。在较低的压痕深度下,由于浅表层的多孔弹性和黏弹性特性,会得到较高的相对松弛百分比(p < 0.01)和较高的松弛率(p < 0.05)。增加穿透深度和预载水平会涉及到主要层的响应,导致组织的超弹性和黏弹性参数发生变化,因此对于两个层,剪切模量都会增加(p < 0.01),而松弛率和松弛百分比会降低(p < 0.01)。结果表明,内侧半月板前区的主要层的剪切模量高于中央和后区。相比之下,在外侧半月板中,后区比中区和前区更硬。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验