Ficarella Elisa, Lamberti Luciano, Degertekin Sadik Ozgur
Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70126 Bari, Italy.
Department of Civil Engineering, Dicle University, 21280 Diyarbakır, Turkey.
Materials (Basel). 2019 Jul 2;12(13):2133. doi: 10.3390/ma12132133.
This study presents a hybrid framework for mechanical identification of materials and structures. The inverse problem is solved by combining experimental measurements performed by optical methods and non-linear optimization using metaheuristic algorithms. In particular, we develop three advanced formulations of Simulated Annealing (SA), Harmony Search (HS) and Big Bang-Big Crunch (BBBC) including enhanced approximate line search and computationally cheap gradient evaluation strategies. The rationale behind the new algorithms-denoted as Hybrid Fast Simulated Annealing (HFSA), Hybrid Fast Harmony Search (HFHS) and Hybrid Fast Big Bang-Big Crunch (HFBBBC)-is to generate high quality trial designs lying on a properly selected set of descent directions. Besides hybridizing SA/HS/BBBC metaheuristic search engines with gradient information and approximate line search, HS and BBBC are also hybridized with an enhanced 1-D probabilistic search derived from SA. The results obtained in three inverse problems regarding composite and transversely isotropic hyperelastic materials/structures with up to 17 unknown properties clearly demonstrate the validity of the proposed approach, which allows to significantly reduce the number of structural analyses with respect to previous SA/HS/BBBC formulations and improves robustness of metaheuristic search engines.
本研究提出了一种用于材料和结构力学识别的混合框架。通过结合光学方法进行的实验测量和使用元启发式算法的非线性优化来解决反问题。具体而言,我们开发了模拟退火(SA)、和声搜索(HS)和大爆炸-大挤压(BBBC)的三种先进公式,包括增强的近似线搜索和计算成本低的梯度评估策略。新算法——称为混合快速模拟退火(HFSA)、混合快速和声搜索(HFHS)和混合快速大爆炸-大挤压(HFBBBC)——背后的基本原理是生成位于适当选择的一组下降方向上的高质量试验设计。除了将SA/HS/BBBC元启发式搜索引擎与梯度信息和近似线搜索进行混合外,HS和BBBC还与从SA派生的增强型一维概率搜索进行了混合。在涉及具有多达17个未知属性的复合材料和横观各向同性超弹性材料/结构的三个反问题中获得的结果清楚地证明了所提出方法的有效性,该方法相对于以前的SA/HS/BBBC公式允许显著减少结构分析的数量,并提高元启发式搜索引擎的鲁棒性。