Dendrite Differentiation, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany.
Dendrite Differentiation, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany.
Curr Biol. 2017 Oct 9;27(19):3017-3024.e4. doi: 10.1016/j.cub.2017.08.037. Epub 2017 Sep 28.
The functional variety in neuronal composition of an adult brain is established during development. Recent studies proposed that interactions between genetic intrinsic programs and external cues are necessary to generate proper neural diversity [1]. However, the molecular mechanisms underlying this developmental process are still poorly understood. Three main subtypes of Drosophila mushroom body (MB) neurons are sequentially generated during development and provide a good example of developmental neural plasticity [2]. Our present data propose that the environmentally controlled steroid hormone ecdysone functions as a regulator of early-born MB neuron fate during larval-pupal transition. We found that the BTB-zinc finger factor Chinmo acts upstream of ecdysone signaling to promote a neuronal fate switch. Indeed, Chinmo regulates the expression of the ecdysone receptor B1 isoform to mediate the production of γ and α'β' MB neurons. In addition, we provide genetic evidence for a regulatory negative feedback loop driving the α'β' to αβ MB neuron transition in which ecdysone signaling in turn controls microRNA let-7 depression of Chinmo expression. Thus, our results uncover a novel interaction in the MB neural specification pathway for temporal control of neuronal identity by interplay between an extrinsic hormonal signal and an intrinsic transcription factor cascade.
成年大脑神经元组成的功能多样性是在发育过程中建立的。最近的研究提出,遗传内在程序和外部线索之间的相互作用对于产生适当的神经多样性是必要的[1]。然而,这一发育过程的分子机制仍知之甚少。果蝇蘑菇体(MB)神经元的三个主要亚型在发育过程中依次产生,为发育中的神经可塑性提供了一个很好的例子[2]。我们目前的数据表明,环境控制的类固醇激素蜕皮激素在幼虫-蛹转变期间作为早期出生的 MB 神经元命运的调节剂。我们发现,BTB-锌指因子 Chinmo 在上游作用于蜕皮激素信号,以促进神经元命运的转变。事实上,Chinmo 调节蜕皮激素受体 B1 同工型的表达,以介导γ和α'β' MB 神经元的产生。此外,我们提供了遗传证据,证明了一个调节性负反馈环驱动α'β'到αβ MB 神经元的转变,其中蜕皮激素信号反过来控制 Chinmo 表达的 microRNA let-7 的抑制。因此,我们的研究结果揭示了 MB 神经特化途径中的一个新的相互作用,即通过外在激素信号和内在转录因子级联之间的相互作用,对神经元身份进行时间控制。