Suppr超能文献

基于激光扫描和频产生显微镜的高光谱成像

Hyperspectral imaging with laser-scanning sum-frequency generation microscopy.

作者信息

Hanninen Adam, Shu Ming Wai, Potma Eric O

机构信息

Department of Astronomy and Physics, University of California, Irvine, CA 92697, USA.

Department of Chemistry, University of California, Irvine, CA 92697, USA.

出版信息

Biomed Opt Express. 2017 Aug 29;8(9):4230-4242. doi: 10.1364/BOE.8.004230. eCollection 2017 Sep 1.

Abstract

Vibrationally sensitive sum-frequency generation (SFG) microscopy is a chemically selective imaging technique sensitive to non-centrosymmetric molecular arrangements in biological samples. The routine use of SFG microscopy has been hampered by the difficulty of integrating the required mid-infrared excitation light into a conventional, laser-scanning nonlinear optical (NLO) microscope. In this work, we describe minor modifications to a regular laser-scanning microscope to accommodate SFG microscopy as an imaging modality. We achieve vibrationally sensitive SFG imaging of biological samples with sub-m resolution at image acquisition rates of 1 frame/s, almost two orders of magnitude faster than attained with previous point-scanning SFG microscopes. Using the fast scanning capability, we demonstrate hyperspectral SFG imaging in the CH-stretching vibrational range and point out its use in the study of molecular orientation and arrangement in biologically relevant samples. We also show multimodal imaging by combining SFG microscopy with second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) on the same imaging platfrom. This development underlines that SFG microscopy is a unique modality with a spatial resolution and image acquisition time comparable to that of other NLO imaging techniques, making point-scanning SFG microscopy a valuable member of the NLO imaging family.

摘要

振动敏感和频产生(SFG)显微镜是一种化学选择性成像技术,对生物样品中的非中心对称分子排列敏感。由于难以将所需的中红外激发光集成到传统的激光扫描非线性光学(NLO)显微镜中,SFG显微镜的常规应用受到了阻碍。在这项工作中,我们描述了对常规激光扫描显微镜的微小修改,以将SFG显微镜作为一种成像方式。我们以1帧/秒的图像采集速率实现了生物样品的振动敏感SFG成像,分辨率达到亚微米级,比以前的点扫描SFG显微镜快近两个数量级。利用快速扫描能力,我们展示了在CH拉伸振动范围内的高光谱SFG成像,并指出了其在研究生物相关样品中分子取向和排列方面的应用。我们还展示了在同一成像平台上通过将SFG显微镜与二次谐波产生(SHG)和相干反斯托克斯拉曼散射(CARS)相结合的多模态成像。这一进展强调了SFG显微镜是一种独特的成像方式,其空间分辨率和图像采集时间与其他NLO成像技术相当,使点扫描SFG显微镜成为NLO成像家族中的一个有价值的成员。

相似文献

1
Hyperspectral imaging with laser-scanning sum-frequency generation microscopy.
Biomed Opt Express. 2017 Aug 29;8(9):4230-4242. doi: 10.1364/BOE.8.004230. eCollection 2017 Sep 1.
2
Nonlinear Optical Methods for Characterization of Molecular Structure and Surface Chemistry.
Top Catal. 2018 Jun;61(9-11):1101-1124. doi: 10.1007/s11244-018-0924-3. Epub 2018 Apr 17.
4
Phase-Sensitive Vibrationally Resonant Sum-Frequency Generation Microscopy in Multiplex Configuration at 80 MHz Repetition Rate.
J Phys Chem B. 2021 Aug 26;125(33):9507-9516. doi: 10.1021/acs.jpcb.1c05430. Epub 2021 Aug 14.
6
Multimodal Nonlinear Optical Microscopy.
Laser Photon Rev. 2011 Jul;5(4). doi: 10.1002/lpor.201000027.
7
Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser.
Opt Express. 2013 Mar 25;21(6):7096-106. doi: 10.1364/OE.21.007096.
8
Multimodal Nonlinear Optical Imaging for Sensitive Detection of Multiple Pharmaceutical Solid-State Forms and Surface Transformations.
Anal Chem. 2017 Nov 7;89(21):11460-11467. doi: 10.1021/acs.analchem.7b02639. Epub 2017 Oct 18.
10
Polarization-sensitive sum-frequency generation microscopy of collagen fibers.
J Phys Chem B. 2015 Feb 26;119(8):3356-65. doi: 10.1021/jp511058b. Epub 2015 Feb 17.

引用本文的文献

1
All-reflective freeform microscope objective for ultra-broadband microscopy.
Opt Express. 2024 Dec 30;32(27):47893-47907. doi: 10.1364/OE.544492.
2
Vibrational imaging of metabolites for improved microbial cell strains.
J Biomed Opt. 2024 Jun;29(Suppl 2):S22711. doi: 10.1117/1.JBO.29.S2.S22711. Epub 2024 Jul 1.
6
Second harmonic generation microscopy: a powerful tool for bio-imaging.
Biophys Rev. 2023 Jan 19;15(1):43-70. doi: 10.1007/s12551-022-01041-6. eCollection 2023 Feb.
7
Spectral imaging at high definition and high speed in the mid-infrared.
Sci Adv. 2022 Nov 18;8(46):eade4247. doi: 10.1126/sciadv.ade4247. Epub 2022 Nov 16.
9
Leaving the Limits of Linearity for Light Microscopy.
J Phys Chem C Nanomater Interfaces. 2020 Nov 12;124(45):24555-24565. doi: 10.1021/acs.jpcc.0c07501. Epub 2020 Sep 22.
10
Vibrational Sum-Frequency Scattering as a Sensitive Approach to Detect Structural Changes in Collagen Fibers Treated with Surfactants.
Langmuir. 2019 Jun 18;35(24):7848-7857. doi: 10.1021/acs.langmuir.9b00412. Epub 2019 Jun 3.

本文引用的文献

1
Three-Dimensional Geometry of Collagenous Tissues by Second Harmonic Polarimetry.
Sci Rep. 2017 Jun 1;7(1):2642. doi: 10.1038/s41598-017-02326-7.
2
Unified Theory for Polarization Analysis in Second Harmonic and Sum Frequency Microscopy.
Biophys J. 2016 Oct 4;111(7):1553-1568. doi: 10.1016/j.bpj.2016.04.019.
3
Compressive Broad-Band Hyperspectral Sum Frequency Generation Microscopy to Study Functionalized Surfaces.
J Phys Chem Lett. 2016 May 19;7(10):1781-7. doi: 10.1021/acs.jpclett.6b00507. Epub 2016 Apr 28.
4
Multimodal Broadband Vibrational Sum Frequency Generation (MM-BB-V-SFG) Spectrometer and Microscope.
J Phys Chem B. 2016 Jan 14;120(1):102-16. doi: 10.1021/acs.jpcb.5b10290. Epub 2015 Dec 31.
6
Polarization-sensitive sum-frequency generation microscopy of collagen fibers.
J Phys Chem B. 2015 Feb 26;119(8):3356-65. doi: 10.1021/jp511058b. Epub 2015 Feb 17.
7
Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation.
Annu Rev Phys Chem. 2015 Apr;66:189-216. doi: 10.1146/annurev-physchem-040214-121322. Epub 2014 Dec 8.
8
Vibrationally resonant sum-frequency generation microscopy with a solid immersion lens.
Biomed Opt Express. 2014 Jun 9;5(7):2125-34. doi: 10.1364/BOE.5.002125. eCollection 2014 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验