Kariman Behjat S, Diaspro Alberto, Bianchini Paolo
Nanoscopy and NIC@IIT, Center for Human Technology, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.
DIFILAB, Department of Physics, University of Genoa, Genoa, Italy.
Sci Rep. 2024 Apr 10;14(1):8392. doi: 10.1038/s41598-024-57462-8.
Transient absorption, or pump-probe microscopy is an absorption-based technique that can explore samples ultrafast dynamic properties and provide fluorescence-free contrast mechanisms. When applied to graphene and its derivatives, this technique exploits the graphene transient response caused by the ultrafast interband transition as the imaging contrast mechanism. The saturation of this transition is fundamental to allow for super-resolution optical far-field imaging, following the reversible saturable optical fluorescence transitions (RESOLFT) concept, although not involving fluorescence. With this aim, we propose a model to numerically compute the temporal evolution under saturation conditions of the single-layer graphene molecular states, which are involved in the transient absorption. Exploiting an algorithm based on the fourth order Runge-Kutta (RK4) method, and the density matrix approach, we numerically demonstrate that the transient absorption signal of single-layer graphene varies linearly as a function of excitation intensity until it reaches saturation. We experimentally verify this model using a custom pump-probe super-resolution microscope. The results define the intensities necessary to achieve super-resolution in a pump-probe nanoscope while studying graphene-based materials and open the possibility of predicting such a saturation process in other light-matter interactions that undergo the same transition.
瞬态吸收或泵浦-探测显微镜技术是一种基于吸收的技术,它可以探索样品的超快动态特性,并提供无荧光的对比机制。当应用于石墨烯及其衍生物时,该技术利用超快带间跃迁引起的石墨烯瞬态响应作为成像对比机制。这种跃迁的饱和对于实现超分辨率光学远场成像至关重要,这遵循了可逆饱和光学荧光跃迁(RESOLFT)概念,尽管不涉及荧光。出于这个目的,我们提出了一个模型,用于数值计算参与瞬态吸收的单层石墨烯分子态在饱和条件下的时间演化。利用基于四阶龙格-库塔(RK4)方法和密度矩阵方法的算法,我们通过数值证明,单层石墨烯的瞬态吸收信号在达到饱和之前随激发强度呈线性变化。我们使用定制的泵浦-探测超分辨率显微镜对该模型进行了实验验证。这些结果确定了在研究基于石墨烯的材料时,在泵浦-探测纳米显微镜中实现超分辨率所需的强度,并为预测其他经历相同跃迁的光-物质相互作用中的这种饱和过程开辟了可能性。