Department of Biomedical Engineering, Virginia Tech-Wake Forest University, School of Biomedical Engineering and Sciences, Wake Forest School of Medicine , Winston-Salem, North Carolina 27101, United States.
Department of Physics, Wake Forest University , Winston-Salem, North Carolina 27101, United States.
Nano Lett. 2017 Nov 8;17(11):7110-7116. doi: 10.1021/acs.nanolett.7b03911. Epub 2017 Oct 5.
Many regulated epigenetic elements and base lesions found in genomic DNA can both directly impact gene expression and play a role in disease processes. However, due to their noncanonical nature, they are challenging to assess with conventional technologies. Here, we present a new approach for the targeted detection of diverse modified bases in DNA. We first use enzymatic components of the DNA base excision repair pathway to install an individual affinity label at each location of a selected modified base with high yield. We then probe the resulting material with a solid-state nanopore assay capable of discriminating labeled DNA from unlabeled DNA. The technique features exceptional modularity via selection of targeting enzymes, which we establish through the detection of four DNA base elements: uracil, 8-oxoguanine, T:G mismatch, and the methyladenine analog 1,N-ethenoadenine. Our results demonstrate the potential for a quantitative nanopore assessment of a broad range of base modifications.
许多在基因组 DNA 中发现的受调控的表观遗传元件和碱基损伤既可以直接影响基因表达,也可以在疾病过程中发挥作用。然而,由于它们的非经典性质,用传统技术评估它们具有挑战性。在这里,我们提出了一种新的方法,用于靶向检测 DNA 中的多种修饰碱基。我们首先使用 DNA 碱基切除修复途径的酶成分,以高产率在选定的修饰碱基的每个位置安装一个单独的亲和标记。然后,我们用一种能够区分标记 DNA 和未标记 DNA 的固态纳米孔测定法来探测所得材料。该技术通过选择靶向酶具有出色的模块化特性,我们通过检测四种 DNA 碱基元件来建立靶向酶:尿嘧啶、8-氧鸟嘌呤、T:G 错配和甲基腺嘌呤类似物 1, N-烯腺嘌呤。我们的结果表明,对广泛的碱基修饰进行定量纳米孔评估具有潜力。