Suppr超能文献

可视化单光催化剂颗粒上的纳米共催化剂取向电场。

Visualizing the Nano Cocatalyst Aligned Electric Fields on Single Photocatalyst Particles.

机构信息

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457, Dalian 116023, China.

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Silizium-Photovoltaik , Kekuléstr. 5, D-12489 Berlin, Germany.

出版信息

Nano Lett. 2017 Nov 8;17(11):6735-6741. doi: 10.1021/acs.nanolett.7b02799. Epub 2017 Oct 5.

Abstract

The cocatalysts or dual cocatalysts of photocatalysts are indispensable for high efficiency in artificial photosynthesis for solar fuel production. However, the reaction activity increased by cocatalysts cannot be directly ascribed to the accelerated catalytic kinetics, since photogenerated charges are involved in the elementary steps of photocatalytic reactions. To date, diverging views about cocatalysts show that their exact role for photocatalysis is not well understood yet. Herein, we image directly the local separation of photogenerated charge carriers across single crystals of the BiVO photocatalyst which loaded locally with nanoparticles of a MnO single cocatalyst or with nanoparticles of a spatially separated MnO and Pt dual cocatalyst. The deposition of the single cocatalyst resulted not only in a strong increase of the interfacial charge transfer but also, surprisingly, in a change of the direction of built-in electric fields beneath the uncovered surface of the photocatalyst. The additive electric fields caused a strong increase of local surface photovoltage signals (up to 80 times) and correlated with the increase of the photocatalytic performance. The local electric fields were further increased (up to 2.5 kV·cm) by a synergetic effect of the spatially separated dual cocatalysts. The results reveal that cocatalyst has a conclusive effect on charge separation in photocatalyst particle by aligning the vectors of built-in electric fields in the photocatalyst particle. This effect is beyond its catalytic function in thermal catalysis.

摘要

光催化剂的共催化剂或双共催化剂对于人工光合作用生产太阳能燃料的高效性是不可或缺的。然而,共催化剂增加的反应活性不能直接归因于催化动力学的加速,因为光生电荷参与了光催化反应的基本步骤。迄今为止,关于共催化剂的不同观点表明,人们对其在光催化中的确切作用还没有很好的理解。在此,我们直接对负载有 MnO 单共催化剂纳米粒子或空间分离的 MnO 和 Pt 双共催化剂纳米粒子的 BiVO 光催化剂单晶中光生载流子的局部分离进行成像。单共催化剂的沉积不仅导致界面电荷转移的强烈增加,而且令人惊讶的是,还导致光催化剂未被覆盖表面下的内置电场的方向发生变化。外加电场导致局部表面光电压信号的强烈增加(高达 80 倍),并与光催化性能的增加相关。通过空间分离的双共催化剂的协同效应,局部电场进一步增加(高达 2.5 kV·cm)。结果表明,共催化剂通过调整光催化剂颗粒中内置电场的矢量对光催化剂颗粒中的电荷分离具有决定性的影响。这种影响超出了其在热催化中的催化功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验