Suppr超能文献

瞬态吸收显微镜绘制光催化氮化碳颗粒中的空间异质性和不同化学环境图。

Transient Absorption Microscopy Maps Spatial Heterogeneity and Distinct Chemical Environments in Photocatalytic Carbon Nitride Particles.

作者信息

Khasnabis Sutripto, Godin Robert

机构信息

Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.

Clean Energy Research Center, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada.

出版信息

Small. 2025 Feb;21(5):e2406652. doi: 10.1002/smll.202406652. Epub 2024 Dec 23.

Abstract

Limitations in solar energy conversion by photocatalysis typically stem from poor underlying charge carrier properties. Transient Absorption (TA) reveals insights on key photocatalytic properties such as charge carrier lifetimes and trapping. However, on the microsecond timescale, these measurements use relatively large probe sizes ranging in millimetres to centimetres which averages the effect of spatial heterogeneity at smaller length scales. A home-built Transient Absorption Microscopy (TAM) setup is reported and used to study single particles of carbon nitride (CN), an emerging photocatalyst. For the first time, to the best of the authors' knowledge, µs-s timescales are explored within individual particles to gain a more complete understanding of their photophysics. The dynamics of trapped charges are monitored, enabling measurement and quantification of heterogeneity in the transient absorptance signal of individual CN particles and within them. Particle-to-particle heterogeneity in the trapped charge density is observed, while spatial heterogeneity in lifetimes within a particle is revealed using a smaller probe beam with a ≈5 µm diameter. Overall, the observations suggest that contributions from different local environments independently influence charge trapping at different timescales. TAM on the micron and microsecond spatiotemporal resolution will aid in tackling design questions about optimal chemical environments for the promotion of photoactivity.

摘要

光催化太阳能转换的局限性通常源于底层电荷载流子性能不佳。瞬态吸收(TA)揭示了诸如电荷载流子寿命和俘获等关键光催化性能的相关信息。然而,在微秒时间尺度上,这些测量使用的探针尺寸相对较大,范围从毫米到厘米,这会平均较小长度尺度上的空间异质性影响。本文报道了一种自制的瞬态吸收显微镜(TAM)装置,并用于研究新兴光催化剂氮化碳(CN)的单个颗粒。据作者所知,首次在单个颗粒内探索了微秒至秒的时间尺度,以更全面地了解其光物理性质。监测俘获电荷的动力学,能够测量和量化单个CN颗粒及其内部瞬态吸收信号中的异质性。观察到俘获电荷密度在颗粒间存在异质性,同时使用直径约5微米的较小探测光束揭示了颗粒内寿命的空间异质性。总体而言,这些观察结果表明,不同局部环境的贡献在不同时间尺度上独立影响电荷俘获。具有微米和微秒时空分辨率的TAM将有助于解决有关促进光活性的最佳化学环境的设计问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99c8/11798357/ef6c51e7f3a4/SMLL-21-2406652-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验