Suppr超能文献

人工神经网络作为一种替代工具,用于将超可变形纳米脂质体制剂制造中的误差预测降至最低。

Artificial neural networks as alternative tool for minimizing error predictions in manufacturing ultradeformable nanoliposome formulations.

作者信息

León Blanco José M, González-R Pedro L, Arroyo García Carmen Martina, Cózar-Bernal María José, Calle Suárez Marcos, Canca Ortiz David, Rabasco Álvarez Antonio María, González Rodríguez María Luisa

机构信息

a Department of Industrial Management Science, School of Engineering , Universidad de Sevilla , Seville , Spain.

b Department of Pharmaceutical Technology, Faculty of Pharmacy , Universidad de Sevilla , Seville , Spain.

出版信息

Drug Dev Ind Pharm. 2018 Jan;44(1):135-143. doi: 10.1080/03639045.2017.1386201. Epub 2017 Oct 17.

Abstract

This work was aimed at determining the feasibility of artificial neural networks (ANN) by implementing backpropagation algorithms with default settings to generate better predictive models than multiple linear regression (MLR) analysis. The study was hypothesized on timolol-loaded liposomes. As tutorial data for ANN, causal factors were used, which were fed into the computer program. The number of training cycles has been identified in order to optimize the performance of the ANN. The optimization was performed by minimizing the error between the predicted and real response values in the training step. The results showed that training was stopped at 10 000 training cycles with 80% of the pattern values, because at this point the ANN generalizes better. Minimum validation error was achieved at 12 hidden neurons in a single layer. MLR has great prediction ability, with errors between predicted and real values lower than 1% in some of the parameters evaluated. Thus, the performance of this model was compared to that of the MLR using a factorial design. Optimal formulations were identified by minimizing the distance among measured and theoretical parameters, by estimating the prediction errors. Results indicate that the ANN shows much better predictive ability than the MLR model. These findings demonstrate the increased efficiency of the combination of ANN and design of experiments, compared to the conventional MLR modeling techniques.

摘要

这项工作旨在通过采用默认设置的反向传播算法来确定人工神经网络(ANN)的可行性,以生成比多元线性回归(MLR)分析更好的预测模型。该研究以噻吗洛尔脂质体为研究对象。作为人工神经网络的教程数据,使用了因果因素,并将其输入计算机程序。已经确定了训练周期的数量,以优化人工神经网络的性能。通过在训练步骤中最小化预测响应值与实际响应值之间的误差来进行优化。结果表明,在10000个训练周期和80%的模式值时停止训练,因为此时人工神经网络的泛化效果更好。在单层12个隐藏神经元时实现了最小验证误差。多元线性回归具有很强的预测能力,在一些评估参数中,预测值与实际值之间的误差低于1%。因此,使用析因设计将该模型的性能与多元线性回归模型的性能进行了比较。通过最小化测量参数与理论参数之间的距离,估计预测误差,确定了最佳配方。结果表明,人工神经网络的预测能力比多元线性回归模型好得多。这些发现表明,与传统的多元线性回归建模技术相比,人工神经网络与实验设计相结合的效率有所提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验