海马体作为一个预测图。
The hippocampus as a predictive map.
机构信息
DeepMind, London, UK.
Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA.
出版信息
Nat Neurosci. 2017 Nov;20(11):1643-1653. doi: 10.1038/nn.4650. Epub 2017 Oct 2.
A cognitive map has long been the dominant metaphor for hippocampal function, embracing the idea that place cells encode a geometric representation of space. However, evidence for predictive coding, reward sensitivity and policy dependence in place cells suggests that the representation is not purely spatial. We approach this puzzle from a reinforcement learning perspective: what kind of spatial representation is most useful for maximizing future reward? We show that the answer takes the form of a predictive representation. This representation captures many aspects of place cell responses that fall outside the traditional view of a cognitive map. Furthermore, we argue that entorhinal grid cells encode a low-dimensionality basis set for the predictive representation, useful for suppressing noise in predictions and extracting multiscale structure for hierarchical planning.
长久以来,认知地图一直是海马体功能的主导隐喻,它包含了这样一种观点,即位置细胞对空间进行了几何编码。然而,位置细胞中存在的预测编码、奖励敏感性和策略依赖性的证据表明,这种表示并不是纯粹的空间表示。我们从强化学习的角度来解决这个难题:什么样的空间表示对于最大化未来奖励最有用?我们表明,答案是以预测表示的形式出现的。这种表示捕获了许多属于传统认知地图之外的位置细胞反应的方面。此外,我们认为,内嗅皮层栅格细胞为预测表示编码了一个低维基集,这对于抑制预测中的噪声和提取分层规划的多尺度结构非常有用。