Suppr超能文献

利用知识图谱和多标签学习模型促进药物不良反应预测。

Facilitating prediction of adverse drug reactions by using knowledge graphs and multi-label learning models.

机构信息

Fujitsu Ireland Ltd., Co. Dublin, Ireland.

Insight Centre for Data Analytics, NUI Galway, Co. Galway, Ireland.

出版信息

Brief Bioinform. 2019 Jan 18;20(1):190-202. doi: 10.1093/bib/bbx099.

Abstract

Timely identification of adverse drug reactions (ADRs) is highly important in the domains of public health and pharmacology. Early discovery of potential ADRs can limit their effect on patient lives and also make drug development pipelines more robust and efficient. Reliable in silico prediction of ADRs can be helpful in this context, and thus, it has been intensely studied. Recent works achieved promising results using machine learning. The presented work focuses on machine learning methods that use drug profiles for making predictions and use features from multiple data sources. We argue that despite promising results, existing works have limitations, especially regarding flexibility in experimenting with different data sets and/or predictive models. We suggest to address these limitations by generalization of the key principles used by the state of the art. Namely, we explore effects of: (1) using knowledge graphs-machine-readable interlinked representations of biomedical knowledge-as a convenient uniform representation of heterogeneous data; and (2) casting ADR prediction as a multi-label ranking problem. We present a specific way of using knowledge graphs to generate different feature sets and demonstrate favourable performance of selected off-the-shelf multi-label learning models in comparison with existing works. Our experiments suggest better suitability of certain multi-label learning methods for applications where ranking is preferred. The presented approach can be easily extended to other feature sources or machine learning methods, making it flexible for experiments tuned toward specific requirements of end users. Our work also provides a clearly defined and reproducible baseline for any future related experiments.

摘要

及时识别药物不良反应(ADR)在公共卫生和药理学领域非常重要。早期发现潜在的 ADR 可以限制其对患者生命的影响,同时也使药物开发管道更加健壮和高效。在这种情况下,可靠的基于计算机的 ADR 预测可能会有所帮助,因此受到了广泛关注。最近的工作使用机器学习取得了有希望的结果。本研究重点介绍了使用药物特征进行预测并使用来自多个数据源的特征的机器学习方法。我们认为,尽管取得了有希望的结果,但现有工作存在局限性,特别是在尝试不同数据集和/或预测模型方面的灵活性。我们建议通过推广现有技术中使用的关键原则来解决这些局限性。具体来说,我们探索了以下两种方法的效果:(1)使用知识图谱——生物医学知识的机器可读相互链接表示——作为异构数据的便捷统一表示;(2)将 ADR 预测作为多标签排序问题。我们提出了一种使用知识图谱生成不同特征集的具体方法,并展示了选定的现成多标签学习模型与现有工作相比的优异性能。我们的实验表明,某些多标签学习方法更适合需要排序的应用。所提出的方法可以轻松扩展到其他特征源或机器学习方法,使其针对最终用户的特定要求进行实验时具有灵活性。我们的工作还为任何未来的相关实验提供了一个明确定义和可重复的基准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验